Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Pathol J ; 40(3): 329-335, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38835304

RESUMEN

Phytophthora root and stem rot (PRR), caused by Phytophthora sojae, can occur at any growth stage under poorly drained and humid conditions. The expansion of soybean cultivation in South Korean paddy fields has increased the frequency of PRR outbreaks. This study aimed to identify four P. sojae isolates newly collected from domestic fields and evaluate race-specific resistance using the hypocotyl inoculation technique. The four isolates exhibited various pathotypes, with GJ3053 exhibiting the highest virulence complexity. Two isolates, GJ3053 and AD3617, were screened from 205 soybeans, and 182 and 190 genotypes (88.8 and 92.7%, respectively) were susceptible to each isolate. Among these accessions, five genotypes resistant to both isolates were selected. These promising genotypes are candidates for the development of resistant soybean cultivars that can effectively control PRR through gene stacking.

2.
Plant Dis ; 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35666219

RESUMEN

Soybean (Glycine max L.) is one of the most important crops worldwide. In South Korea, three species of Fusarium have been reported as causal pathogens of Fusarium wilt of soybean (KSPP, 2021). From 2017 to 2018, wilted soybeans were observed in two soybean fields in Daegu (36.62°126.91°) and Yesan (35.89°128.44°), South Korea. The incidence rate was about 2 to 5% of the total 0.1ha, respectively. The diseased soybeans were yellowed from the lower leaves or dried up, and the inside of the root and stem were turned brown. Fragments (each 5 mm × 5 mm) of the symptomatic vascular tissue were surface-sterilized with 1% NaOCl for 1 min, and then rinsed twice in sterilized distilled water. The seven pieces each from two diseased plants were placed on water agar and incubated at 25°C for 5 days. Two single spore isolates were cultured on carnation leaf agar at 25°C for 14 days under near ultra violet/dark conditions for 12 hours. Macroconidia of two isolates were mostly 3- to 5-septate, dorsiventral curvature, hyaline, apical cell hooked to tapering, basal cell foot-shaped, and measured 51.3 - 62.2 × 3.7 - 4.7 µm (DG43821) and 63.8-74.8×3.1-4.4 µm (YS37232). Microconidia were not observed. Chlamydospores were produced in chains or pairs, subglobose and thick walled. The color of the aerial mycelium was pinkish white and the reverse of the colony was brownish orange on potato dextrose agar. Based on morphological and cultural characteristics, the two isolates were identified as belonging to Fusarium incarnatum-equiseti species complex (Leslie and Summerell 2006). To confirm the accurate species identification of the two isolates, DNA sequencing of the internal transcribed spacers and intervening 5.8S (ITS), partial translation elongation factor 1-alpha (TEF) and RNA polymerase II largest subunit (RPB2) genes was carried out using primer sets of ITS1/ITS4, EF1 / EF2 and 7cf / 11ar, respectively (O'Donnell et al. 2010). The nucleotide sequences obtained of two isolates were deposited in GenBank with accession numbers of MW375694, MW375695, MW382963, MW382964, MZ364324 and MZ364325. Identities of the ITS region, TEF and RPB2 gene sequences of the two isolates were 490/492, 482/483, 632/633, 631/632, 870/870 and 931/931 with those of ex-type strain F. ipomoeae LC12165 (MK280832, MK289599 and MK289752) in GenBank, respectively. Thus, based on molecular characteristics, the two isolates were confirmed as F. ipomoeae. A pathogenicity test of the two isolates was conducted using root-dip inoculation on seedlings of one soybean cultivars, Pyeongwon. A spore suspension was prepared by flooding 10-day-old cultures on PDA with sterilized distilled water. Fifteen soybean seedlings at the VC stage per each isolate were inoculated by dipping the roots in the spore suspension (1 × 106 conidia/mL) for 2 hours. Inoculated plants were transplanted into pots containing sterilized soil and maintained in the greenhouse at 28±3°C with 14 h/10 h light/dark. An equal number of plants inoculated with sterilized distilled water served as controls. Five days after inoculation, withered symptoms were observed on two or four of the inoculated seedlings, and by 10 days after inoculation, all inoculated plants had withered and died. No symptoms were observed in the non-inoculated control soybeans. The pathogen was consistently re-isolated from only inoculated plants, thus fulfilling Koch's postulates. To our knowledge, this is the first report of F. ipomoeae causing Fusarium wilt on soybean in South Korea, as well as worldwide. This pathogen has been reported on peanut in China as a causal agent of leaf spot (Xu et al., 2021). Understanding the host range of this pathogen and the distribution of F. ipomoeae affecting legume crops in South Korea is important, to ensure an effective management of Fusarium wilt on soybeans.

3.
Plant Dis ; 2022 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-35700520

RESUMEN

Perilla (Perilla frutescens L.) is the second most important upland crop and the third largest edible oil crop in Korea (Shin and Kim 1994). During a disease survey in Busan, Korea in September 2021, symptoms of vein necrosis were observed in perilla plants, with incidences of approximately 30% and 50% in two fields. Symptoms of spots on the perilla appeared as leaf dryness and spots with water-soaked blotches largely concentrated on the mid-veins of leaves. The lesions were initiated with water-soaked spots on the leaf or stem and gradually turned black or brown. Necrosis was also observed in the stems. A bacterium was isolated on Luria-Bertani (LB) agar from diseased leaf tissues that were surface-disinfected with 70% ethyl alcohol for 3-5 min and then washed with sterile water three times. Three pieces of sterilized leaf tissue (size: 0.5 × 0.5 cm) were mixed with 500 µL sterile water for 30 min, and then the suspension was serially diluted and spread on LB agar. Subsequently, isolates were cultivated on LB agar and King's Medium B agar (KMB) (Schaad et al. 2001), and they were predominantly cream-colored and circular bacterial colonies with undulated margins. The bacterial colonies on KMB displayed fluorescence under 365 nm UV light. The isolates were analyzed with the GEN III MicroPlate (Biolog, Hayward, CA, USA), and all isolates were identified as Pseudomonas cichorii, a devastating plant bacterium that damages a wide range of host plants worldwide, including in South Korea (Hikichi et al. 2013; Ramkumar et al. 2015). To identify the species of the bacterial pathogen, genomic DNA of four isolates (BS4922, BS4167, BS4345, and BS4560) was extracted, and the 16S rRNA gene and hrcRST gene were amplified with universal primers, 27F/1492R and Hcr1/Hcr2, and sequencing was then done (Patel et al. 2019). In the BLAST analysis, the 16S rRNA sequences (GenBank OM060656, OM275434, OM275435, OM275436) showed a 100% and 99% similarity to P. cichorii strains MAFF 302698 (AB724286) and P. cichorii strain Pc-Gd-4 (KU923373), respectively. Further, hrcRST gene sequences (GenBank OM143596, OM268864, OM268865, and OM268866) showed high similarity (>99%) with P. cichorii strain P16-51 (MG518230). A pathogenicity test of the four isolates was performed on 3 - 4 weeks old perilla plants by creating wounds with a needle on the lower leaves and stems, and then the plants were inoculated by spraying inoculum (108 CFU/ml). The plants that served as the negative control were wounded and sprayed with unsterilized water. The inoculated perilla plants were placed in a greenhouse at 28 ± 2oC , 80-85% relative humidity, and a natural photoperiod. The inoculation site began to show symptoms of water-soaked brown lesions. Disease symptoms such as leaf dryness, water-soaked blotches on the mid-vein of leaves, and necrosis on plant stems were observed in the inoculated plants 7-10 days after inoculation, whereas the plants of the negative control group did not show any symptoms. The bacteria were re-isolated from the diseased tissues of the plants, and DNA sequence analysis identified them as P. cichorii. Additionally, all isolates induced hypersensitivity reactions in tobacco and tomato leaves within 24 h after inoculation. To our knowledge, this is the first report of P. cichorii infecting perilla in South Korea. The findings in this study will provide the basic information for the development of diagnostic tools and management measures against P. cichorii in perilla.

4.
Microorganisms ; 8(11)2020 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-33198273

RESUMEN

Soybean (Glycine max L.) is one of the most important crop plants in the Republic of Korea. Here, we conducted a soybean virome study. We harvested a total of 172 soybean leaf samples showing disease symptoms from major soybean-growing regions in the Republic of Korea. Individual samples were examined for virus infection by RT-PCR. Moreover, we generated eight libraries representing eight provinces by pooling samples and four libraries from single samples. RNA-seq followed by bioinformatics analyses revealed 10 different RNA viruses infecting soybean. The proportion of viral reads in each transcriptome ranged from 0.2 to 31.7%. Coinfection of different viruses in soybean plants was very common. There was a single dominant virus in each province, and this geographical difference might be related to the soybean seeds that transmit viruses. In this study, 32 viral genome sequences were assembled and successfully used to analyze the phylogenetic relationships and quasispecies nature of the identified RNA viruses. Moreover, RT-PCR with newly developed primers confirmed infection of the identified viruses in each library. Taken together, our soybean virome study provides a comprehensive overview of viruses infecting soybean in eight geographical regions in the Republic of Korea and four single soybean plants in detail.

5.
Plant Pathol J ; 35(6): 698-704, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31832050

RESUMEN

Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most destructive diseases of soybean. PRSR recently became an issue as soybean cultivation in paddy fields increased in South Korea. The management of PRSR mainly involves R-gene-mediated resistance, however, little is known about the resistance in Korean cultivars. Major Korean soybean cultivars were investigated for the presence or absence of R-gene-mediated resistance to four P. sojae isolates, two of which were new isolates. Isolate-specific reactions were observed following P. sojae inoculation. Of 21 cultivars, 15-20 cultivars (71.4-95.2%) showed susceptible reaction for each isolate. Ten cultivars were susceptible to all the isolates, and six cultivars were identified to have R-gene-mediated resistance to one or two isolates. The results of this study would provide a framework for the discovery of resistant cultivars, development of new cultivars resistant to P. sojae, and investigation of pathogenic diversity of P. sojae population in South Korea.

6.
Arch Virol ; 163(8): 2265-2269, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29651773

RESUMEN

We determined the complete genome sequence of a putative novel ilarvirus, tentatively named "peanut virus C" (PVC), identified in peanut (Arachis hypogaea). The three segmented genomic RNA molecules of PVC were 3474 (RNA1), 2925 (RNA2), and 2160 (RNA3) nucleotides in length, with five predicted open reading frames containing conserved domains and motifs that are typical features of ilarviruses. The three genomic RNAs shared nucleotide sequence similarity (74% identity and 93% query coverage for RNA1, 75% identity and 85% query coverage for RNA2, and 72% identity and 70% query coverage for RNA3) with the most closely related ilarvirus, parietaria mottle virus. These results suggest that PVC is a novel member of the genus Ilarvirus in the family Bromoviridae.


Asunto(s)
Arachis/virología , Genoma Viral , Ilarvirus/genética , Enfermedades de las Plantas/virología , Secuencia de Bases , Ilarvirus/clasificación , Ilarvirus/aislamiento & purificación , Datos de Secuencia Molecular , Sistemas de Lectura Abierta , Filogenia , ARN Viral/genética
7.
Mycobiology ; 40(2): 145-6, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22870060

RESUMEN

The root of Hibiscus syriacus (Malvaceae) has been used for treatment of fungal diseases such as tinea pedis (athlete's foot). In this study, we investigated the antifungal constituent of the root of Hibiscus syriacus Ggoma, which was produced by a mutation breeding using gamma ray irradiation, and compared the antifungal activity of H. syriacus Ggoma and its parent type. According to the results, the methanolic extract of H. syriacus Ggoma exhibited four times higher antifungal activity than its parent type against Trichophyton mentagrophytes. Following purification through various column chromatographies, the antifungal substance was identified as nonanoic acid on the basis of spectroscopic analysis.

9.
Mycobiology ; 37(3): 207-10, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23983534

RESUMEN

Xylaria, belonging to the Ascomycotina, is known to produce diverse classes of bioactive substances. In an effort to identify the chemical constituents of the fruiting bodies of Xylaria polymorpha, linoleic acid (1), linoleic acid methyl ester (2), ergosterol (3), 4-acetyl-3,4-dihydro-6,8-dihydroxy-3-methoxy-5-methyl-1H-2-benzopyran-1-one (4), and 4-hydroxyscytalone (5) were isolated from its methanolic extract. Their structures were assigned on the basis of various spectroscopic studies.

10.
J Antibiot (Tokyo) ; 60(11): 696-9, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18057699

RESUMEN

Two new polypropionates designated as xylarinic acids A and B were isolated from the fruiting body of Xylaria polymorpha. Their structures were established as 4,6,8-trimethyl-2,4-decadienoic acid and 2,4,6-trimethyl-2-octenoic acid, respectively, on the basis of extensive spectroscopic analysis. Both compounds displayed significant antifungal activity against plant pathogenic fungi Pythium ultinum, Magnaporthe grisea, Aspergillus niger, Alternaria panax, and Fusarium oxysporium, whereas they did not show antibacterial and cytotoxic effect.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Ascomicetos/química , Ácidos Grasos Monoinsaturados/farmacología , Ácidos Grasos Insaturados/farmacología , Cuerpos Fructíferos de los Hongos/química , Bacterias/efectos de los fármacos , Línea Celular Tumoral , Fenómenos Químicos , Química Física , Ensayos de Selección de Medicamentos Antitumorales , Ácidos Grasos Monoinsaturados/aislamiento & purificación , Ácidos Grasos Insaturados/aislamiento & purificación , Humanos , Espectroscopía de Resonancia Magnética , Pruebas de Sensibilidad Microbiana , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Sales de Tetrazolio , Tiazoles
11.
Bioorg Med Chem Lett ; 17(17): 4906-9, 2007 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-17588752

RESUMEN

New triterpene glucosides, oligoporins A (1), B (2), and C (3), were isolated from the methanolic extract of the fruiting bodies of Oligoporus tephroleucus (Polyporaceae). Their structures were established by spectroscopic methods. These compounds significantly exhibited protective effect to plasmid DNA damage by hydroxyl radical (*OH) generated from the Fenton reaction with hydrogen peroxide and ferrous.


Asunto(s)
Basidiomycota/metabolismo , Química Farmacéutica/métodos , Daño del ADN , ADN/química , Glucósidos/química , Triterpenos/química , Animales , Fragmentación del ADN , Diseño de Fármacos , Glucósidos/farmacología , Peróxido de Hidrógeno/química , Peróxido de Hidrógeno/farmacología , Radical Hidroxilo , Hierro/química , Hierro/farmacología , Modelos Químicos , Espectrofotometría/métodos , Triterpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...