Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Mater ; : e2402069, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38815130

RESUMEN

Dynamic terahertz devices are vital for the next generation of wireless communication, sensing, and non-destructive imaging technologies. Metasurfaces have emerged as a paradigm-shifting platform, offering varied functionalities, miniaturization, and simplified fabrication compared to their 3D counterparts. However, the presence of in-plane mirror symmetry and reduced degree of freedom impose fundamental limitations on achieving advanced chiral response, beamforming, and reconfiguration capabilities. In this work, a platform composed of electrically actuated resonators that can be colossally reconfigured between planar and 3D geometries is demonstrated. To illustrate the platform, metadevices with 3D Split Ring Resonators are fabricated, wherein two counteracting driving forces are combined: i) folding induced by stress mismatch, which enables non-volatile state design and ii) unfolding triggered by the strain associated with insulator-to-metal transition in VO2, which facilitates volatile structural reconfiguration. This large structural reconfiguration space allows for resonance mode switching, widely tunable magnetic and electric polarizabilities, and increased frequency agility. Moreover, the unique properties of VO2, such as the hysteretic nature of its phase transition is harnessed to demonstrate a multi-state memory. Therefore, these VO2 integrated metadevices are highly attractive for the realization of 6G communication devices such as reconfigurable intelligent surfaces, holographic beam formers, and spatial light modulators.

2.
Opt Express ; 32(4): 5885-5897, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38439304

RESUMEN

Lensless coherent x-ray imaging techniques have great potential for high-resolution imaging of magnetic systems with a variety of in-situ perturbations. Despite many investigations of ferromagnets, extending these techniques to the study of other magnetic materials, primarily antiferromagnets, is lacking. Here, we demonstrate the first (to our knowledge) study of an antiferromagnet using holographic imaging through the 'holography with extended reference by autocorrelation linear differential operation' technique. Energy-dependent contrast with both linearly and circularly polarized x-rays are demonstrated. Antiferromagnetic domains and topological textures are studied in the presence of applied magnetic fields, demonstrating quasi-cyclic domain reconfiguration up to 500 mT.

3.
Nat Mater ; 23(5): 619-626, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38374414

RESUMEN

Antiferromagnets hosting real-space topological textures are promising platforms to model fundamental ultrafast phenomena and explore spintronics. However, they have only been epitaxially fabricated on specific symmetry-matched substrates, thereby preserving their intrinsic magneto-crystalline order. This curtails their integration with dissimilar supports, restricting the scope of fundamental and applied investigations. Here we circumvent this limitation by designing detachable crystalline antiferromagnetic nanomembranes of α-Fe2O3. First, we show-via transmission-based antiferromagnetic vector mapping-that flat nanomembranes host a spin-reorientation transition and rich topological phenomenology. Second, we exploit their extreme flexibility to demonstrate the reconfiguration of antiferromagnetic states across three-dimensional membrane folds resulting from flexure-induced strains. Finally, we combine these developments using a controlled manipulator to realize the strain-driven non-thermal generation of topological textures at room temperature. The integration of such free-standing antiferromagnetic layers with flat/curved nanostructures could enable spin texture designs via magnetoelastic/geometric effects in the quasi-static and dynamical regimes, opening new explorations into curvilinear antiferromagnetism and unconventional computing.

4.
Nat Mater ; 23(2): 205-211, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38052937

RESUMEN

Whirling topological textures play a key role in exotic phases of magnetic materials and are promising for logic and memory applications. In antiferromagnets, these textures exhibit enhanced stability and faster dynamics with respect to their ferromagnetic counterparts, but they are also difficult to study due to their vanishing net magnetic moment. One technique that meets the demand of highly sensitive vectorial magnetic field sensing with negligible backaction is diamond quantum magnetometry. Here we show that an archetypal antiferromagnet-haematite-hosts a rich tapestry of monopolar, dipolar and quadrupolar emergent magnetic charge distributions. The direct read-out of the previously inaccessible vorticity of an antiferromagnetic spin texture provides the crucial connection to its magnetic charge through a duality relation. Our work defines a paradigmatic class of magnetic systems to explore two-dimensional monopolar physics, and highlights the transformative role that diamond quantum magnetometry could play in exploring emergent phenomena in quantum materials.

5.
Nat Commun ; 12(1): 1668, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33712582

RESUMEN

Antiferromagnetic insulators are a ubiquitous class of magnetic materials, holding the promise of low-dissipation spin-based computing devices that can display ultra-fast switching and are robust against stray fields. However, their imperviousness to magnetic fields also makes them difficult to control in a reversible and scalable manner. Here we demonstrate a novel proof-of-principle ionic approach to control the spin reorientation (Morin) transition reversibly in the common antiferromagnetic insulator α-Fe2O3 (haematite) - now an emerging spintronic material that hosts topological antiferromagnetic spin-textures and long magnon-diffusion lengths. We use a low-temperature catalytic-spillover process involving the post-growth incorporation or removal of hydrogen from α-Fe2O3 thin films. Hydrogenation drives pronounced changes in its magnetic anisotropy, Néel vector orientation and canted magnetism via electron injection and local distortions. We explain these effects with a detailed magnetic anisotropy model and first-principles calculations. Tailoring our work for future applications, we demonstrate reversible control of the room-temperature spin-state by doping/expelling hydrogen in Rh-substituted α-Fe2O3.

6.
Nature ; 590(7844): 74-79, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33536652

RESUMEN

In the quest for post-CMOS (complementary metal-oxide-semiconductor) technologies, driven by the need for improved efficiency and performance, topologically protected ferromagnetic 'whirls' such as skyrmions1-8 and their anti-particles have shown great promise as solitonic information carriers in racetrack memory-in-logic or neuromorphic devices1,9-11. However, the presence of dipolar fields in ferromagnets, which restricts the formation of ultrasmall topological textures3,6,8,9,12, and the deleterious skyrmion Hall effect, when skyrmions are driven by spin torques9,10,12, have thus far inhibited their practical implementation. Antiferromagnetic analogues, which are predicted to demonstrate relativistic dynamics, fast deflection-free motion and size scaling, have recently become the subject of intense focus9,13-19, but they have yet to be experimentally demonstrated in natural antiferromagnetic systems. Here we realize a family of topological antiferromagnetic spin textures in α-Fe2O3-an Earth-abundant oxide insulator-capped with a platinum overlayer. By exploiting a first-order analogue of the Kibble-Zurek mechanism20,21, we stabilize exotic merons and antimerons (half-skyrmions)8 and their pairs (bimerons)16,22, which can be erased by magnetic fields and regenerated by temperature cycling. These structures have characteristic sizes of the order of 100 nanometres and can be chemically controlled via precise tuning of the exchange and anisotropy, with pathways through which further scaling may be achieved. Driven by current-based spin torques from the heavy-metal overlayer, some of these antiferromagnetic textures could emerge as prime candidates for low-energy antiferromagnetic spintronics at room temperature1,9-11,23.

7.
Phys Rev Lett ; 125(14): 147003, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-33064530

RESUMEN

Infinite-layer Nd_{1-x}Sr_{x}NiO_{2} thin films with Sr doping level x from 0.08 to 0.3 are synthesized and investigated. We find a superconducting dome x between 0.12 and 0.235 accompanied by a weakly insulating behavior in both under- and overdoped regimes. The dome is akin to that in the electron-doped 214-type and infinite-layer cuprate superconductors. For x≥0.18, the normal state Hall coefficient (R_{H}) changes the sign from negative to positive as the temperature decreases. The temperature of the sign changes decreases monotonically with decreasing x from the overdoped side and approaches the superconducting dome at the midpoint, suggesting a reconstruction of the Fermi surface with the dopant concentration across the dome.

8.
ACS Nano ; 14(3): 3290-3298, 2020 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-32101687

RESUMEN

Reduced graphene oxide (rGO) has attracted significant interest in an array of applications ranging from flexible optoelectronics, energy storage, sensing, and very recently as membranes for water purification. Many of these applications require a reproducible, scalable process for the growth of large-area films of high optical and electronic quality. In this work, we report a one-step scalable method for the growth of reduced-graphene-oxide-like (rGO-like) thin films via pulsed laser deposition (PLD) of sp2 carbon in an oxidizing environment. By deploying an appropriate laser beam scanning technique, we are able to deposit wafer-scale uniform rGO-like thin films with ultrasmooth surfaces (roughness <1 nm). Further, in situ control of the growth environment during the PLD process allows us to tailor its hybrid sp2-sp3 electronic structure. This enables us to control its intrinsic optoelectronic properties and helps us achieve some of the lowest extinction coefficients and refractive index values (0.358 and 1.715, respectively, at 2.236 eV) as compared to chemically grown rGO films. Additionally, the transparency and conductivity metrics of our PLD grown thin films are superior to other p-type rGO films and conducting oxides. Unlike chemical methods, our growth technique is devoid of catalysts and is carried out at lower process temperatures. This would enable the integration of these thin films with a wide range of material heterostructures via direct growth.

9.
Adv Mater ; 31(12): e1808157, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30687971

RESUMEN

The strikingly contrasting optical properties of various phases of chalcogenide phase change materials (PCM) has recently led to the development of novel photonic devices such as all-optical non-von Neumann memory, nanopixel displays, color rendering, and reconfigurable nanoplasmonics. However, the exploration of chalcogenide photonics is currently limited to optical and infrared frequencies. Here, a phase change material integrated terahertz metamaterial for multilevel nonvolatile resonance switching with spatial and temporal selectivity is demonstrated. By controlling the crystalline proportion of the PCM film, multilevel, non-volatile, terahertz resonance switching states with long retention time at zero hold power are realized. Spatially selective reconfiguration at sub-metamaterial scale is shown by delivering electrical stimulus locally through designer interconnect architecture. The PCM metamaterial also features ultrafast optical modulation of terahertz resonances with tunable switching speed based on the crystalline order of the PCM film. The multilevel nonvolatile, spatially selective, and temporally tunable PCM metamaterial will provide a pathway toward development of novel and disruptive terahertz technologies including spatio-temporal terahertz modulators for high speed wireless communication, neuromorphic photonics, and machine-learning metamaterials.

11.
Nat Mater ; 16(12): 1216-1224, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29058729

RESUMEN

Non-volatile memories will play a decisive role in the next generation of digital technology. Flash memories are currently the key player in the field, yet they fail to meet the commercial demands of scalability and endurance. Resistive memory devices, and in particular memories based on low-cost, solution-processable and chemically tunable organic materials, are promising alternatives explored by the industry. However, to date, they have been lacking the performance and mechanistic understanding required for commercial translation. Here we report a resistive memory device based on a spin-coated active layer of a transition-metal complex, which shows high reproducibility (∼350 devices), fast switching (≤30 ns), excellent endurance (∼1012 cycles), stability (>106 s) and scalability (down to ∼60 nm2). In situ Raman and ultraviolet-visible spectroscopy alongside spectroelectrochemistry and quantum chemical calculations demonstrate that the redox state of the ligands determines the switching states of the device whereas the counterions control the hysteresis. This insight may accelerate the technological deployment of organic resistive memories.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...