Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 1254, 2024 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-38218977

RESUMEN

Glioblastoma (GBM) is a fast-growing and aggressive brain tumor which invades the nearby brain tissue but generally does not spread to the distant organs. Nonetheless, if untreated, GBM can result in patient death in time even less than few months from the diagnosis. The influence of the tumor progress on organs other than brain is obvious but still not well described. Therefore, we examined the elemental abnormalities appearing in selected body organs (kidney, heart, spleen, lung) in two rat models of GBM. The animals used for the study were subjected to the implantation of human GBM cell lines (U87MG and T98G) characterized by different levels of invasiveness. The elemental analysis of digested organ samples was carried out using the total reflection X-ray fluorescence (TXRF) method, independently, in three European laboratories utilizing various commercially available TXRF spectrometers. The comparison of the data obtained for animals subjected to T98G and U87MG cells implantation showed a number of elemental anomalies in the examined organs. What is more, the abnormalities were found for rats even if neoplastic tumor did not develop in their brains. The most of alterations for both experimental groups were noted in the spleen and lungs, with the direction of the found element changes in these organs being the opposite. The observed disorders of element homeostasis may result from many processes occurring in the animal body as a result of implantation of cancer cells or the development of GBM, including inflammation, anemia of chronic disease or changes in iron metabolism. Tumor induced changes in organ elemental composition detected in cooperating laboratories were usually in a good agreement. In case of elements with higher atomic numbers (Fe, Cu, Zn and Se), 88% of the results were classified as fully compliant. Some discrepancies between the laboratories were found for lighter elements (P, S, K and Ca). However, also in this case, the obtained results fulfilled the requirements of full (the results from three laboratories were in agreement) or partial agreement (the results from two laboratories were in agreement).


Asunto(s)
Glioblastoma , Humanos , Ratas , Animales , Fluorescencia , Rayos X , Encéfalo , Homeostasis
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123230, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37586277

RESUMEN

Glioblastoma multiforme (GBM) is the most common and devastating primary brain tumor among adults. It is highly lethal disease, as only 25% of patients survive longer than 1 year and only 5% more than 5 years from the diagnosis. To search for the new, more effective methods of treatment, the understanding of mechanisms underlying the process of tumorigenesis is needed. The new light on this problem may be shed by the analysis of biochemical anomalies of tissues affected by tumor growth. Therefore, in the present work, we applied the Fourier transform infrared (FTIR) and Raman microspectroscopy to evaluate changes in the distribution and structure of biomolecules appearing in the rat brain as a result of glioblastoma development. In turn, synchrotron X-ray fluorescence microscopy was utilized to determine the elemental anomalies appearing in the nervous tissue. To achieve the assumed goals of the study animal models of GBM were used. The rats were subjected to the intracranial implantation of glioma cells with different degree of invasiveness. For spectroscopic investigation brain slices taken from the area of cancer cells administration were used. The obtained results revealed, among others, the decrease content of lipids and compounds containing carbonyl groups, compositional and structural changes of proteins as well as abnormalities in the distribution of low atomic number elements within the region of tumor.


Asunto(s)
Glioblastoma , Ratas , Animales , Glioblastoma/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Proteínas , Encéfalo/patología , Modelos Animales
3.
Spectrochim Acta A Mol Biomol Spectrosc ; 287(Pt 2): 122086, 2023 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-36423418

RESUMEN

Fourier Transform Infrared (FTIR) microspectroscopy is well known for its effectiveness in spectral and biochemical analyses of various materials. It enables to determine the sample biochemical composition by assigning detected frequencies, characteristic for functional groups of main biological macromolecules. In analysis of tissue sections one of two measurement modes, namely transmission and transflection, is usually applied. The first one has relatively straightforward geometry, hence it is considered to be more precise and accurate. However, IR-transparent media are very fragile and expensive. Transflection does not require expensive substrates, but is more prone to disruptive influence of Mie scattering as well as electric field standing wave effect. The excessive comparison of spectra' characteristics, obtained via both measurement modes, was performed in this paper. By the means of Mann-Whitney non-parametrical U test and PCA, the comparison of results obtained with both modes and assessment of usefulness of IR spectra obtained with transmission and transflection modes to differentiate between healthy and GBM-affected tissue, were performed. The main objective of the presented research is to compare the results of FTIR analysis of unfixed biological samples performed with transflection and transmission mode. In frame of the study we demonstrated the discrepancies between results of biochemical analysis performed based on data obtained with transmission and transflection. Such observation suggests that caution should be taken in drawing conclusions from the results obtained with transflection geometry, as its more prone to disruptive effects. Despite that, IR spectra developed with both modes allowed to distinguish GBM area from healthy tissue, which proves their diagnostic potential. Especially, application of the ME-EMSC correction of spectra before PCA enhances the performance of both methods to distinguish the analysed tissue areas.


Asunto(s)
Glioblastoma , Humanos , Análisis de Fourier , Glioblastoma/diagnóstico , Espectroscopía Infrarroja por Transformada de Fourier , Electricidad , Espectrofotometría Infrarroja
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 278: 121337, 2022 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-35537264

RESUMEN

The core size of iron oxide nanoparticles (IONPs) is a crucial factor defining not only their magnetic properties but also toxicological profile and biocompatibility. On the other hand, particular IONPs may induce different biological response depending on the dose, exposure time, but mainly depending on the examined system. New light on this problem may be shed by the information concerning biomolecular anomalies appearing in various cell lines in response to the action of IONPs with different core diameters and this was accomplished in the present study. Using Raman microscopy we studied the abnormalities in the accumulation of proteins, lipids and organic matter within the nucleus, cytoplasm and cellular membrane of macrophages, HEK293T and U87MG cell line occurring as a result of 24-hour long exposure to PEG-coated magnetite IONPs. The examined nanoparticles had 5, 10 and 30 nm cores and were administered in doses 5 and 25 µg Fe/ml. The obtained results showed significant anomalies in biochemical composition of macrophages and the U87MG cells, but not the HEK293T cells, occurring as a result of exposure to all of the examined nanoparticles. However, IONPs with 10 nm core diminished the accumulation of biomolecules in cells only when they were administered at a larger dose. The Raman spectra recorded for the macrophages subjected to 30 nm IONPs and for the U87MG cells exposed to 5 and 10 nm showed the presence of additional bands in the wavenumber range 1700-2400 cm-1, probably resulting from the appearance of Fe adducts within cells. Our results indicate, moreover, that smaller IONPs may be effectively internalized into the U87MG cells, which points at their diagnostic/therapeutic potential in the case of glioblastoma multiforme.


Asunto(s)
Nanopartículas de Magnetita , Nanopartículas , Compuestos Férricos/toxicidad , Óxido Ferrosoférrico , Células HEK293 , Humanos , Macrófagos , Nanopartículas de Magnetita/química , Nanopartículas de Magnetita/toxicidad , Nanopartículas/química
5.
Int J Mol Sci ; 23(2)2022 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-35054889

RESUMEN

Glioblastoma multiforme (GBM) is a particularly malignant primary brain tumor. Despite enormous advances in the surgical treatment of cancer, radio- and chemotherapy, the average survival of patients suffering from this cancer does not usually exceed several months. For obvious ethical reasons, the search and testing of the new drugs and therapies of GBM cannot be carried out on humans, and for this purpose, animal models of the disease are most often used. However, to assess the efficacy and safety of the therapy basing on these models, a deep knowledge of the pathological changes associated with tumor development in the animal brain is necessary. Therefore, as part of our study, the synchrotron radiation-based X-ray fluorescence microscopy was applied for multi-elemental micro-imaging of the rat brain in which glioblastoma develops. Elemental changes occurring in animals after the implantation of two human glioma cell lines as well as the cells taken directly from a patient suffering from GBM were compared. Both the extent and intensity of elemental changes strongly correlated with the regions of glioma growth. The obtained results showed that the observation of elemental anomalies accompanying tumor development within an animal's brain might facilitate our understanding of the pathogenesis and progress of GBM and also determine potential biomarkers of its extension. The tumors appearing in a rat's brain were characterized by an increased accumulation of Fe and Se, whilst the tissue directly surrounding the tumor presented a higher accumulation of Cu. Furthermore, the results of the study allow us to consider Se as a potential elemental marker of GBM progression.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Encéfalo/metabolismo , Glioblastoma/metabolismo , Animales , Encéfalo/patología , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glioblastoma/diagnóstico , Glioblastoma/patología , Humanos , Masculino , Microscopía Fluorescente , Ratas
6.
Sci Rep ; 11(1): 21808, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750434

RESUMEN

Although the key factor affecting the biocompatibility of IONPs is the core size, there is a lack of regular investigation concerning the impact of the parameter on the toxicity of these nanomaterials. Therefore, such studies were carried out in this paper. Their purpose was to compare the influence of PEG-coated-magnetite NPs with the core of 5, 10 and 30 nm on six carefully selected cell lines. The proliferation rate, viability, metabolic activity, migration activity, ROS levels and cytoskeleton architecture of cells have been evaluated for specified incubation periods. These were 24 and 72-h long incubations with IONPs administered in two doses: 5 and 25 µg Fe/ml. A decrease in viability was observed after exposure to the tested NPs for all the analyzed cell lines. This effect was not connected with core diameter but depended on the exposure time to the nanomaterials. IONPs increased not only the proliferation rate of macrophages-being phagocytic cells-but also, under certain conditions stimulated tumor cell divisions. Most likely, the increase in proliferation rate of macrophages contributed to the changes in the architecture of their cytoskeleton. The growth in the level of ROS in cells had been induced mainly by the smallest NPs. This effect was observed for HEK293T cells and two cancerous lines: U87MG (at both doses tested) and T98G (only for the higher dose). This requires further study concerning both potential toxicity of such IONPs to the kidneys and assessing their therapeutic potential in the treatment of glioblastoma multiforme.


Asunto(s)
Línea Celular/efectos de los fármacos , Nanopartículas Magnéticas de Óxido de Hierro/química , Animales , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Línea Celular/metabolismo , Línea Celular Tumoral/efectos de los fármacos , Línea Celular Tumoral/metabolismo , Movimiento Celular/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Células HEK293/efectos de los fármacos , Células HEK293/metabolismo , Humanos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Nanopartículas Magnéticas de Óxido de Hierro/administración & dosificación , Nanopartículas Magnéticas de Óxido de Hierro/ultraestructura , Ratones , Microscopía Electrónica de Transmisión , Tamaño de la Partícula , Especies Reactivas de Oxígeno/metabolismo
7.
ACS Chem Neurosci ; 11(24): 4447-4459, 2020 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-33205959

RESUMEN

Glioblastoma multiforme (GBM) is a primary brain tumor with a very high degree of malignancy and is classified by WHO as a glioma IV. At present, the treatment of patients suffering from GBM is based on surgical resection of the tumor with maximal protection of surrounding tissues followed by radio- and pharmacological therapy using temozolomide as the most frequently recommended drug. This strategy, however, does not guarantee success and has devastating consequences. Testing of new substances or therapies having potential in the treatment of GBM as well as detection of their side effects cannot be done on humans. Animal models of the disease are usually used for these purposes, and one possibility is the implantation of human tumor cells into rodent brains. Such a solution was used in the present study the purpose of which was comparison of elemental anomalies appearing in the brain as a result of implantation of different glioblastoma cell lines. These were two commercially available cell lines (U87MG and T98G), as well as tumor cells taken directly from a patient diagnosed with GBM. Using total reflection X-ray fluorescence we determined the contents of P, S, K, Ca, Fe, Cu, Zn, and Se in implanted-left and intact-right brain hemispheres. The number of elemental anomalies registered for both hemispheres was positively correlated with the invasiveness of GBM cells and was the highest for animals subjected to U87MG cell implantation, which presented significant decrease of P, K, and Cu levels and an increase of Se concentration within the left hemisphere. The abnormality common for all three groups of animals subjected to glioma cell implantation was increased Fe level in the brain, which may result from higher blood supply or the presence of hemorrhaging regions. In the case of the intact hemisphere, elevated Fe concentration may also indicate higher neuronal activity caused by taking over some functions of the left hemisphere impaired as a result of tumor growth.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Animales , Encéfalo , Línea Celular Tumoral , Humanos , Ratas , Espectrometría por Rayos X , Temozolomida
8.
Sci Rep ; 10(1): 15447, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32963318

RESUMEN

In the paper, the results of the first regular studies of ultra-small iron oxide nanoparticles (IONPs) toxicity in vitro were presented. The influence of PEG-coated NPs with 5 nm magnetite core on six different cell lines was examined. These were: human bronchial fibroblasts, human embryonic kidney cells (HEK293T), two glioblastoma multiforme (GBM) cell lines as well as GBM cells isolated from a brain tumor of patient. Additionally, mouse macrophages were included in the study. The influence of IONPs in three different doses (1, 5 and 25 µg Fe/ml) on the viability, proliferation and migration activity of cells was assessed. Moreover, quantifying the intracellular ROS production, we determined the level of oxidative stress in cells exposed to IONPs. In the paper, for the first time, the effect of Fe in the form of IONPs was compared with the analogical data obtained for iron salts solutions containing the same amount of Fe, on the similar oxidation state. Our results clearly showed that the influence of iron on the living cells strongly depends not only on the used cell line, dose and exposure time but also on the form in which this element was administered to the culture. Notably, nanoparticles can stimulate the proliferation of some cell lines, including glioblastoma multiforme. Compared to Fe salts, they have a stronger negative impact on the viability of the cells tested. Ultra-small NPs, also, more often positively affect cell motility which seem to differ them from the NPs with larger core diameters.


Asunto(s)
Movimiento Celular , Proliferación Celular , Compuestos de Hierro/farmacología , Nanopartículas de Magnetita/administración & dosificación , Ensayo de Materiales , Animales , Supervivencia Celular , Células Cultivadas , Humanos , Técnicas In Vitro , Nanopartículas de Magnetita/química , Ratones , Oxidación-Reducción , Tamaño de la Partícula
9.
Toxicol In Vitro ; 62: 104676, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31629898

RESUMEN

Bisphenol A (BPA) is commonly present in plastics used for food storage and preservation. The release of BPA from these products results in a permanent human exposition to BPA; however, the quality and quantity of BPA adverse effects remain a matter of controversy. The common presence of BPA in the human environment and the controversies concerning the relations of human exposition to BPA and cancer incidence justify the research on the interactions between BPA and pro-metastatic signaling in cancer cells. Here, we describe a novel BPA-reactive signaling axis that induces the epithelial-mesenchymal transition (EMT) in lung adenocarcinoma A549 cells. BPA exerted negligible effects on their properties in a wide range of concentrations (10 nM - 100 nM), whereas it considerably induced A549 invasiveness at high concentrations (10 µM). The BPA-induced EMT was illustrated by morphologic changes, E/N-cadherin switch and vimentin/Snail-1/connexin(Cx)43 up-regulation in A549 populations. It was followed by enhancement of A549 drug-resistance. Corresponding effects of BPA were observed in prostate cancer cell populations. Concomitantly, we observed increased levels and perinuclear accumulation of estrogen-related receptor gamma (ERRγ) in BPA-treated cells, its interactions with Cx43/Snail-1, and the corresponding effects of phenol red on A549 cells. Collectively, these data identify a novel, pro-metastatic Snail-1/Cx43/ERRγ signaling pathway. Its reactivity to BPA underlies the induction of cancer cells' invasiveness in the presence of high BPA concentrations in vitro. Thus, the chronic exposition of cancer cells to extrinsic and intrinsic BPA should be considered as a potential obstacle in a cancer therapy.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Movimiento Celular/efectos de los fármacos , Conexina 43/metabolismo , Transición Epitelial-Mesenquimal/efectos de los fármacos , Estrógenos/toxicidad , Fenoles/toxicidad , Receptores de Estrógenos/metabolismo , Factores de Transcripción de la Familia Snail/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Humanos , Fenolsulfonftaleína
10.
Fitoterapia ; 134: 172-181, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30825580

RESUMEN

Thuja occidentalis L. is indigenous for Northern America and commonly cultivated in Europe. Raw materials obtained from this tree are widely applied in the ethnomedicine and phytotherapy of numerous ailments, incl. scurvy, cystitis, rheumatism and cancer. Despite wide medicinal applications of Thuja occidentalis, still little is known on its therapeutic potential in tumor treatment. α-thujone is the main component of Thuja occidentalis essential oil, which has been suggested to possess anti-tumor activities. This monoterpene easily penetrates the blood-brain barrier. Therefore, we examined its effects on the malignancy of glioblastoma multiforme (GBM) cells, with the special emphasis on the mechanisms of its effect on cell viability and invasiveness. α-thujone exerted the attenuating effect on the viability and proliferation of GBM cells when administered at the concentrations between 100 and 500 µg/ml (660 µM - 3.2 mM). This effect was correlated with the induction of apoptosis in GBM cell populations and with considerable inhibition of GBM cells motility. Mechanistic analyses demonstrated the induction of oxidative stress and autophagy in α-thujone-treated tumor cells, whereas normal astrocytes displayed considerably lower sensitivity to α-thujone. Our observations demonstrate that α-thujone exerts pro-apoptotic and anti-invasive effects on GBM cells. They confirm the potential of α-thujone for the treatment of glioblastoma multiforme.


Asunto(s)
Glioblastoma/patología , Monoterpenos/farmacología , Aceites Volátiles/farmacología , Thuja/química , Apoptosis , Monoterpenos Bicíclicos , Línea Celular Tumoral , Supervivencia Celular , Glioblastoma/tratamiento farmacológico , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...