Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Opt Express ; 32(10): 17189-17196, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38858908

RESUMEN

High-finesse microcavities offer a platform for compact, high-precision sensing by employing high-reflectivity, low-loss mirrors to create effective optical path lengths that are orders of magnitude larger than the device geometry. Here, we investigate the radiation hardness of Fabry-Pérot microcavities formed from dielectric mirrors deposited on the tips of optical fibers. The microcavities are irradiated under both conventional (∼ 0.1 Gy/s) and ultrahigh (FLASH, ∼ 20 Gy/s) radiotherapy dose rates. Within our measurement sensitivity of ∼ 40 ppm loss, we observe no degradation in the mirror absorption after irradiation with over 300 Gy accumulated dose. This result highlights the excellent radiation hardness of the dielectric mirrors forming the cavities, enabling new optics-based, real-time, in-vivo, tissue-equivalent radiation dosimeters with ∼ 10 micron spatial resolution (our motivation), as well as other applications in high-radiation environments.

2.
Phys Rev Lett ; 132(13): 133002, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38613260

RESUMEN

Optically active spin defects in solids offer promising platforms to investigate nuclear spin clusters with high sensitivity and atomic-site resolution. To leverage near-surface defects for molecular structure analysis in chemical and biological contexts using nuclear magnetic resonance (NMR), further advances in spectroscopic characterization of nuclear environments are essential. Here, we report Fourier spectroscopy techniques to improve localization and mapping of the test bed ^{13}C nuclear spin environment of individual, shallow nitrogen-vacancy centers at room temperature. We use multidimensional spectroscopy, well-known from classical NMR, in combination with weak measurements of single-nuclear-spin precession. We demonstrate two examples of multidimensional NMR: (i) improved nuclear spin localization by separate encoding of the two hyperfine components along spectral dimensions and (ii) spectral editing of nuclear-spin pairs, including measurement of internuclear coupling constants. Our work adds important tools for the spectroscopic analysis of molecular structures by single-spin probes.

3.
Nano Lett ; 23(22): 10110-10117, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37934929

RESUMEN

The long-lived electronic spin of the nitrogen-vacancy (NV) center in diamonds is a promising quantum sensor for detecting nanoscopic magnetic and electric fields in various environments. However, the poor signal-to-noise ratio (SNR) of prevalent optical spin-readout techniques presents a critical challenge in improving measurement sensitivity. Here, we address this limitation by coupling individual NVs to optimized diamond nanopillars, thereby enhancing the collection efficiency of fluorescence. Guided by near-field optical simulations, we predict improved performance for tall (≥5 µm) pillars with tapered sidewalls. This is subsequently verified by fabricating and characterizing a representative set of structures using a newly developed nanofabrication process. We observe increased SNR for optimized devices, owing to improved emission collimation and directionality. Promisingly, these devices are compatible with low-numerical-aperture collection optics and a reduced tip radius, reducing experimental overhead and facilitating improved spatial resolution for scanning applications.

4.
J Chem Phys ; 158(16)2023 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-37093150

RESUMEN

Photoexcitable donor-bridge-acceptor (D-B-A) molecules that support intramolecular charge transfer are ideal platforms to probe the influence of chiral induced spin selectivity (CISS) in electron transfer and resulting radical pairs. In particular, the extent to which CISS influences spin polarization or spin coherence in the initial state of spin-correlated radical pairs following charge transfer through a chiral bridge remains an open question. Here, we introduce a quantum sensing scheme to measure directly the hypothesized spin polarization in radical pairs using shallow nitrogen-vacancy (NV) centers in diamond at the single- to few-molecule level. Importantly, we highlight the perturbative nature of the electron spin-spin dipolar coupling within the radical pair and demonstrate how Lee-Goldburg decoupling can preserve spin polarization in D-B-A molecules for enantioselective detection by a single NV center. The proposed measurements will provide fresh insight into spin selectivity in electron transfer reactions.

5.
J Mater Chem C Mater ; 10(37): 13533-13569, 2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36324301

RESUMEN

Quantum sensing using optically addressable atomic-scale defects, such as the nitrogen-vacancy (NV) center in diamond, provides new opportunities for sensitive and highly localized characterization of chemical functionality. Notably, near-surface defects facilitate detection of the minute magnetic fields generated by nuclear or electron spins outside of the diamond crystal, such as those in chemisorbed and physisorbed molecules. However, the promise of NV centers is hindered by a severe degradation of critical sensor properties, namely charge stability and spin coherence, near surfaces (< ca. 10 nm deep). Moreover, applications in the chemical sciences require methods for covalent bonding of target molecules to diamond with robust control over density, orientation, and binding configuration. This forward-looking Review provides a survey of the rapidly converging fields of diamond surface science and NV-center physics, highlighting their combined potential for quantum sensing of molecules. We outline the diamond surface properties that are advantageous for NV-sensing applications, and discuss strategies to mitigate deleterious effects while simultaneously providing avenues for chemical attachment. Finally, we present an outlook on emerging applications in which the unprecedented sensitivity and spatial resolution of NV-based sensing could provide unique insight into chemically functionalized surfaces at the single-molecule level.

6.
Nano Lett ; 22(18): 7294-7303, 2022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36069765

RESUMEN

Nuclear magnetic resonance (NMR) imaging with shallow nitrogen-vacancy (NV) centers in diamond offers an exciting route toward sensitive and localized chemical characterization at the nanoscale. Remarkable progress has been made to combat the degradation in coherence time and stability suffered by near-surface NV centers using suitable chemical surface termination. However, approaches that also enable robust control over adsorbed molecule density, orientation, and binding configuration are needed. We demonstrate a diamond surface preparation for mixed nitrogen- and oxygen-termination that simultaneously improves NV center coherence times for <10 nm-deep emitters and enables direct and recyclable chemical functionalization via amine-reactive cross-linking. Using this approach, we probe single NV centers embedded in nanopillar waveguides to perform 19F NMR sensing of covalently bound fluorinated molecules with detection on the order of 100 molecules. This work signifies an important step toward nuclear spin localization and structure interrogation at the single-molecule level.


Asunto(s)
Diamante , Nitrógeno , Aminas , Diamante/química , Espectroscopía de Resonancia Magnética/métodos , Nitrógeno/química , Oxígeno
7.
Opt Express ; 30(2): 754-767, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35209259

RESUMEN

We present a simple, continuous, cavity-enhanced optical absorption measurement technique based on high-bandwidth Pound-Drever-Hall (PDH) sideband locking. The technique provides a resonant amplitude quadrature readout that can be mapped onto the cavity's internal loss rate and is naturally compatible with weak probe beams. With a proof-of-concept 5-cm-long Fabry-Perot cavity, we measure an absorption sensitivity ∼10-10cm-1/Hz from 30 kHz to 1 MHz, and a minimum value of 6.6×10-11cm-1/Hz at 100 kHz, with 38 µW collected from the cavity's circulating power.

8.
Opt Express ; 25(17): 20932-20943, 2017 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-29041769

RESUMEN

Fiber-based optical microcavities exhibit high quality factor and low mode volume resonances that make them attractive for coupling light to individual atoms or other microscopic systems. Moreover, their low mass should lead to excellent mechanical response up to high frequencies, opening the possibility for high bandwidth stabilization of the cavity length. Here, we demonstrate a locking bandwidth of 44 kHz achieved using a simple, compact design that exploits these properties. Owing to the simplicity of fiber feedthroughs and lack of free-space alignment, this design is inherently compatible with vacuum and cryogenic environments. We measure the transfer function of the feedback circuit (closed-loop) and the cavity mount itself (open-loop), which, combined with simulations of the mechanical response of our device, provide insight into underlying limitations of the design as well as further improvements that can be made.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...