Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 633: 892-911, 2018 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-29602124

RESUMEN

A large concentration of finer particulate matter (PM2.5), the primary air-quality concern in northern peninsular Southeast Asia (PSEA), is believed to be closely related to large amounts of biomass burning (BB) particularly in the dry season. In order to quantitatively estimate the contributions of BB to aerosol radiative effects, we thoroughly investigated the physical, chemical, and optical properties of BB aerosols through the integration of ground-based measurements, satellite retrievals, and modelling tools during the Seven South East Asian Studies/Biomass-burning Aerosols & Stratocumulus Environment: Lifecycles & Interactions Experiment (7-SEAS/BASELInE) campaign in 2014. Clusters were made on the basis of measured BB tracers (Levoglucosan, nss-K+, and NO3-) to classify the degree of influence from BB over an urban atmosphere, viz., Chiang Mai (18.795°N, 98.957°E, 354m.s.l.), Thailand in northern PSEA. Cluster-wise contributions of BB to PM2.5, organic carbon, and elemental carbon were found to be 54-79%, 42-79%, and 39-77%, respectively. Moreover, the cluster-wise aerosol optical index (aerosol optical depth at 500nm≈0.98-2.45), absorption (single scattering albedo ≈0.87-0.85; absorption aerosol optical depth ≈0.15-0.38 at 440nm; absorption Ångström exponent ≈1.43-1.57), and radiative impacts (atmospheric heating rate ≈1.4-3.6Kd-1) displayed consistency with the degree of BB. PM2.5 during Extreme BB (EBB) was ≈4 times higher than during Low BB (LBB), whereas this factor was ≈2.5 for the magnitude of radiative effects. Severe haze (visibility≈4km) due to substantial BB loadings (BB to PM2.5≈79%) with favorable meteorology can significantly impact the local-to-regional air quality and the, daily life of local inhabitants as well as become a respiratory health threat. Additionally, such enhancements in atmospheric heating could potentially influence the regional hydrological cycle and crop productivity over Chiang Mai in northern PSEA.

2.
J Food Sci Technol ; 52(8): 4819-29, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26243902

RESUMEN

Drying can add value, facilitate transport and extend the storage life of agro-products; therefore, in developing countries with poorly established cool-chains, drying is particularly effective. Furthermore, drying within small-scale village-based enterprises contributes to rural development. However, most equipment suitable to such operations yields a product of non-uniform quality and shows low levels of energy efficiency. The aim of this research was to improve the batch uniformity and the energy efficiency of a cabinet dryer suitable for smallholder farmers. Experiments were carried out with the cooperation of a dryer manufacturer and a group of users. On each trial 144.5 kg of peeled and deseeded litchis were placed at the dryer's 17 trays, that were stacked atop each other. Moisture content (wet basis) was reduced from 87 to 23 % in about 15.5 h. It was found that a low-cost modification to the dryer chamber's air inlet was able to improve heat distribution and increase the uniformity of the fruit's moisture content. In the original design, at the end of the drying process, moisture content of the fruits on the top tray was 38 % while at the bottom tray was 12 %. The modification to the dryer reduced this disparity and the final moisture content of the fruits placed at the top tray was 25 % while at the bottom tray was 21 %. In addition, the modification reduced the dryer's air mass flow from 0.3 to 0.1 kg s(-1) without jeopardizing drying forces, consequently the dryer energy efficiency increased from 33 to 42 %.

3.
Photochem Photobiol ; 82(2): 579-86, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16613516

RESUMEN

There are a range of UV models available, but one needs significant pre-existing knowledge and experience in order to be able to use them. In this article a comparatively simple Web-based model developed for the SoDa (Integration and Exploitation of Networked Solar Radiation Databases for Environment Monitoring) project is presented. This is a clear-sky model with modifications for cloud effects. To determine if the model produces realistic UV data the output is compared with 1 year sets of hourly measurements at sites in the United Kingdom and Thailand. The accuracy of the output depends on the input, but reasonable results were obtained with the use of the default database inputs and improved when pyranometer instead of modeled data provided the global radiation input needed to estimate the UV. The average modeled values of UV for the UK site were found to be within 10% of measurements. For the tropical sites in Thailand the average modeled values were within 1120% of measurements for the four sites with the use of the default SoDa database values. These results improved when pyranometer data and TOMS ozone data from 2002 replaced the standard SoDa database values, reducing the error range for all four sites to less than 15%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA