Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(10)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37893537

RESUMEN

Background and Objectives: Growing antibiotic resistance among bacteria is a global issue that is becoming harder and more expensive to solve. Traditional treatment options are becoming less effective, causing more fatal outcomes of nosocomial infections. Since the development of new antibiotics has stagnated in the last decade, a novel approach is needed. Materials and Methods: Graphene-based materials are being developed and tested for various applications, and the medical field is no exception. We tested 98 clinical A. baumannii strains for antibiotic resistance, AMP-C production and the effectiveness of a graphene oxide and silver nanoparticle hybrid nanocomposite. The disc diffusion method was used to determine antibiotic susceptibility results. Antibiotic discs containing cefotaxime, cloxacillin and clavulanate were used to detect AMP-C production. The effectiveness of the GO-Ag hybrid nanocomposite was determined by counting colony forming units (CFUs) after a suspension of A. baumannii and the GO-Ag hybrid nanocomposite was plated on MH agar and incubated overnight to grow colonies. Results: In our research, we found that A. baumannii strains are resistant to the majority of commonly used antibiotics. Antibiotic resistance levels and AMP-C production can be factors, indicating the better effectiveness of the graphene oxide and silver nanoparticle hybrid nanocomposite. Conclusions: In this study, a GO-Ag hybrid nanocomposite was shown to have the potential to fight even the most problematic bacteria like A. baumannii.


Asunto(s)
Acinetobacter baumannii , Grafito , Nanopartículas del Metal , Humanos , Grafito/farmacología , Plata/farmacología , Plata/uso terapéutico , Nanopartículas del Metal/uso terapéutico , Prevalencia , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Farmacorresistencia Microbiana
2.
Plants (Basel) ; 11(8)2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-35448813

RESUMEN

Silver nanoparticles (AgNPs) biosynthesized using plant extracts as reducing and capping agents show multiple possibilities for solving various biological problems. The aim of this study was to expand the boundaries of AgNPs using a novel low toxicity and production cost phytochemical method for the biosynthesis of nanoparticles from Eucalyptus globulus and Salvia officinalis aqueous leaf extracts. Biosynthesized AgNPs were characterized by various methods (ultraviolet-visible spectroscopy (UV-vis), Fourier transform infrared (FTIR) spectroscopy with horizontal attenuated total reflectance (HART), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS)). The determined antioxidative and antimicrobial activity of plant extracts was compared with the activity of the AgNPs. The UV-vis spectral analysis demonstrated the absorption peaks at 408 and 438 nm, which confirmed the synthesis of stable AgNPs from E. globulus and S. officinalis, respectively. FTIR-HART results suggested strong capping of phytochemicals on AgNPs. TEM results show mainly spherical-shaped AgNPs, whose size distribution depends on the plant leaf extract type; the smaller AgNPs were obtained with E. globulus extract (with size range of 17.5 ± 5.89 nm compared to 34.3 ± 7.76 nm from S. officinalis AgNPs). The in vitro antioxidant activity evaluated by radical scavenging assays and the reduction activity method clearly demonstrated that both the plant extracts and AgNPs showed prominent antioxidant properties. In addition, AgNPs show much stronger antimicrobial activity against broad spectrum of Gram-negative and Gram-positive bacteria strains than the plant extracts used for their synthesis.

3.
Int J Nanomedicine ; 15: 5147-5163, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32764942

RESUMEN

BACKGROUND: In the last decades, nosocomial infections caused by drug-resistant Pseudomonas aeruginosa became a common problem in healthcare facilities. Antibiotics are becoming less effective as new resistant strains appear. Therefore, the development of novel enhanced activity antibacterial agents becomes very significant. A combination of nanomaterials with different physical and chemical properties enables us to generate novel multi-functional derivatives. In this study, graphene oxide and polyvinylpyrrolidone-stabilized silver nanoparticles hybrid nanocomposite (GO-Ag HN) were synthesized. The relation between antibiotic resistance and GO-Ag HN potential toxicity to clinical P. aeruginosa strains, their antibiotic resistance, and molecular mechanisms were assessed. METHODS: Chemical state, particle size distribution, and morphology of synthesized GO-Ag NH were investigated using spectroscopy and microscopy techniques (UV-Vis, FTIR, XPS, TEM, SEM, AFM). Broad-spectrum antibiotic resistance of P. aeruginosa strains was determined using E-test. Antibiotic resistance genes were identified using polymerase chain reaction (PCR). RESULTS: In this study, the toxicity of the GO-Ag NH to the isolated clinical P. aeruginosa strains has been investigated. A high antibiotic resistance level (92%) was found among P. aeruginosa strains. The most prevalent antibiotic resistance gene among tested strains was the AMPC beta-lactamase gene (65.6%). UV-vis, FTIR, and XPS studies confirmed the formation of the silver nanoparticles on the GO nanosheets. The functionalization process occurred through the interaction between Ag nanoparticles, GO, and polyvinylpyrrolidone used for nanoparticle stabilization. SEM analysis revealed that GO nanosheets undergo partial fragmentation during hybrid nanocomposite preparation, which remarkably increases the number of sharp edges and their mediated cutting effect. TEM analysis showed that GO-Ag HN spherical Ag nanoparticles mainly 9-12 nm in size were irregularly precipitated on the GO nanosheet surface. A higher density of Ag NPs was observed in the sheets' wrinkles, corrugations, and sharp edges. This hybrid nanocomposite poses enhanced antibacterial activity against carbapenem-resistant P. aeruginosa strains through a possible synergy between toxicity mechanisms of GO nanosheets and Ag nanoparticles. With incubation time increasing up to 10 minutes, the survival of P. aeruginosa decreased significantly. CONCLUSION: A graphene oxide and silver nanoparticles hybrid composite has been shown to be a promising material to control nosocomial infections caused by bacteria strains resistant to most antibiotics.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Grafito/química , Grafito/farmacología , Nanopartículas del Metal/química , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Plata/química , Antibacterianos/química , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos
4.
Molecules ; 24(3)2019 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-30754653

RESUMEN

An electrospun mat of Eudragit E100 (EE100) (a cationic copolymer based on dimethylaminoethyl methacrylate, butyl methacrylate, and methyl methacrylate) was used as a delivery system for oregano ethanolic extract (OEE). Oregano is a biologically active material which is widely used because of the antibacterial and antifungal activity. The oregano herb consists of phenolic compounds, the main of which are rosmarinic acid and from essential oil-carvacrol. Such a material could be an ideal candidate for oral drug systems. The influence of the EE100 concentration in the OEE on the structure of electrospun mats, encapsulation efficiency, dissolution profile, release kinetics and the stability of biologically active compounds was investigated. The concentration of the solution is a critical parameter for the structure and properties of electrospun mats. The diameter of electrospun fibers increased with the increase of EE100 concentration in the OEE. Electrospun mats obtained from 24% to 32% EE100 solutions showed high encapsulation efficiency, quick release and high stability of rosmarinic acid and carvacrol. Dissolution tests showed that 99% of carvacrol and 80% of rosmarinic acid were released after 10 min from electrospun nano-microfiber mats and capsules obtained from such formulations. The stability tests showed that physicochemical properties, dissolution profiles, and rosmarinic acid and carvacrol contents of the formulations were not significantly affected by storage.


Asunto(s)
Acrilatos/química , Cinamatos/química , Depsidos/química , Monoterpenos/química , Origanum/química , Polímeros/química , Cimenos , Composición de Medicamentos , Sistemas de Liberación de Medicamentos , Estabilidad de Medicamentos , Etanol/química , Microscopía Electrónica de Rastreo , Nanotecnología , Extractos Vegetales/química , Ácido Rosmarínico
5.
Molecules ; 22(6)2017 Jun 09.
Artículo en Inglés | MEDLINE | ID: mdl-28598370

RESUMEN

The most effective means to protect against bacterial invasion and to reduce the risk of healthcare-associated infections are antibacterial components synthesis. In this study, a novel process for the synthesis of organic-inorganic hybrid coatings containing silver nanoparticles is presented. Silver nanoparticles and polymer formation proceeds simultaneously through the in situ photoreduction of silver salt to silver nanoparticles and UV-crosslinking of bifunctional aliphatic silicone acrylate. The nanocomposite films with 0.5-1.43 wt % of silver nanoparticles concentration were obtained and investigated. The formation of silver nanoparticles in polymer matrix was confirmed via UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy, scanning electron spectroscopy, and energy dispersive spectroscopy. Our investigations clearly show the formation of silver nanoparticles in silicone acrylate network. Direct photoreduction of silver salt by UV-radiation in the organic media produced silver nanoparticles exhibiting cubic crystal structure. The size of nanoparticles was determined to be near 20 ± 5 nm. The antibacterial activities of coatings were determined using the disc diffusion and direct contact methods. UV-curable silicone acrylate hybrid coatings exhibited antibacterial activity against harmful bacteria strains.


Asunto(s)
Acrilatos/química , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Nanopartículas del Metal/química , Silicio/química , Plata/química , Antibacterianos/farmacología , Antibacterianos/efectos de la radiación , Materiales Biocompatibles Revestidos/farmacología , Materiales Biocompatibles Revestidos/efectos de la radiación , Escherichia coli/efectos de los fármacos , Escherichia coli/crecimiento & desarrollo , Nanopartículas del Metal/ultraestructura , Pruebas de Sensibilidad Microbiana , Oxidación-Reducción , Procesos Fotoquímicos , Plata/farmacología , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/crecimiento & desarrollo , Propiedades de Superficie , Rayos Ultravioleta
6.
Appl Opt ; 56(8): 2241-2249, 2017 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-28375313

RESUMEN

Two different grating formation geometries for recording onto the positive-tone photoresist with pulsed laser and continuous-wave sources are analyzed and compared. Diffraction efficiency measurements and atomic force microscopy (AFM) examination have been performed in order to investigate the optical and topographical properties of the recorded structures. Gratings patterned by a continuous-wave laser and by a pulsed laser working in the single pulse and multipulse regimes showed different surface roughness and optical properties. The possible reasons for surface roughness and effective exposure differences between gratings created with pulsed and continuous-wave laser radiations are discussed. The processing schemes for diffractive structures patterned by pulsed laser onto positive-tone photoresist for commercial hologram production are analyzed and presented in this work.

7.
Pharmacol Res ; 113(Pt B): 823-832, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-26926094

RESUMEN

Legislative requirements for the quality of pharmacological agents underwent certain evolution when new type of therapies emerged. This relates to cell based medicines, such as tissue engineered cartilage products (TECP) which are increasingly developed as new modalities for widely prevalent orthopaedic disorders. Although quality measures for TECP are subject to the same general regulatory quality requirements, combination of cellular and scaffold substances requires definition of specific characteristics in vitro that are highly relevant to potency and efficacy of the newly designed medicinal product. One of the specific issues in designing cell based medicines is the fact that the biological activity of active substance, or cells, usually is altered after seeding them on a three-dimensional scaffold. Newly acquired features of the TECP are influenced by chemical, physical and mechanical characteristics of the scaffolds. A vast array of analytical methods has been employed to measure efficacy and potency of TECP in cartilage regeneration studies in vitro. Designing specific physical characteristics of scaffolds may become essential part influencing pharmacological activity of cell based medicinal products, and discern TECP from typical pharmacological products. As an example, increasingly growing popularity of three-dimensional printing that utilizes direct laser writing technique provides an opportunity to improve efficacy of the final TECP. This review is intended to provide brief summary of current approaches used to characterize cells and scaffolds in vitro before and after combination into TECP. Validating TECP as pharmacological agents with unique biological and physical characteristics may broaden their clinical application.


Asunto(s)
Cartílago/fisiología , Animales , Humanos , Regeneración/fisiología , Ingeniería de Tejidos/métodos , Andamios del Tejido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...