Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Intell Syst ; 5(5)2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37637939

RESUMEN

While interest in soft robotics as surgical tools has grown due to their inherently safe interactions with the body, their feasibility is limited in the amount of force that can be transmitted during procedures. This is especially apparent in minimally invasive procedures where millimeter-scale devices are necessary for reaching the desired surgical site, such as in interventional bronchoscopy. To leverage the benefits of soft robotics in minimally invasive surgery, a soft robot with integrated tip steering, stabilization, and needle deployment capabilities is proposed for lung tissue biopsy procedures. Design, fabrication, and modeling of the force transmission of this soft robotic platform allows for integration into a system with a diameter of 3.5 mm. Characterizations of the soft robot are performed to analyze bending angle, force transmission, and expansion during needle deployment. In-vitro experiments of both the needle deployment mechanism and fully integrated soft robot validate the proposed workflow and capabilities in a simulated surgical setting.

2.
Front Robot AI ; 8: 731010, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35096979

RESUMEN

Metallic tools such as graspers, forceps, spatulas, and clamps have been used in proximity to delicate neurological tissue and the risk of damage to this tissue is a primary concern for neurosurgeons. Novel soft robotic technologies have the opportunity to shift the design paradigm for these tools towards safer and more compliant, minimally invasive methods. Here, we present a pneumatically actuated, origami-inspired deployable brain retractor aimed at atraumatic surgical workspace generation inside the cranial cavity. We discuss clinical requirements, design, fabrication, analytical modeling, experimental characterization, and in-vitro validation of the proposed device on a brain model.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...