Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38612659

RESUMEN

Photosystem I (PSI) is one of the two main pigment-protein complexes where the primary steps of oxygenic photosynthesis take place. This review describes low-temperature frequency-domain experiments (absorption, emission, circular dichroism, resonant and non-resonant hole-burned spectra) and modeling efforts reported for PSI in recent years. In particular, we focus on the spectral hole-burning studies, which are not as common in photosynthesis research as the time-domain spectroscopies. Experimental and modeling data obtained for trimeric cyanobacterial Photosystem I (PSI3), PSI3 mutants, and PSI3-IsiA18 supercomplexes are analyzed to provide a more comprehensive understanding of their excitonic structure and excitation energy transfer (EET) processes. Detailed information on the excitonic structure of photosynthetic complexes is essential to determine the structure-function relationship. We will focus on the so-called "red antenna states" of cyanobacterial PSI, as these states play an important role in photochemical processes and EET pathways. The high-resolution data and modeling studies presented here provide additional information on the energetics of the lowest energy states and their chlorophyll (Chl) compositions, as well as the EET pathways and how they are altered by mutations. We present evidence that the low-energy traps observed in PSI are excitonically coupled states with significant charge-transfer (CT) character. The analysis presented for various optical spectra of PSI3 and PSI3-IsiA18 supercomplexes allowed us to make inferences about EET from the IsiA18 ring to the PSI3 core and demonstrate that the number of entry points varies between sample preparations studied by different groups. In our most recent samples, there most likely are three entry points for EET from the IsiA18 ring per the PSI core monomer, with two of these entry points likely being located next to each other. Therefore, there are nine entry points from the IsiA18 ring to the PSI3 trimer. We anticipate that the data discussed below will stimulate further research in this area, providing even more insight into the structure-based models of these important cyanobacterial photosystems.


Asunto(s)
Clorofila , Complejo de Proteína del Fotosistema I , Complejo de Proteína del Fotosistema I/genética , Dicroismo Circular , Transferencia de Energía , Frío
2.
J Phys Chem B ; 126(36): 6891-6910, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-36065077

RESUMEN

The PSI3-IsiA18 supercomplex is one of the largest and most complicated assemblies in photosynthesis. The IsiA ring, composed of 18 IsiA monomers (IsiA18) surrounding the PSI trimer (PSI3), forms under iron-deficient conditions in cyanobacteria and acts as a peripheral antenna. Based on the supercomplex structure recently determined via cryo-EM imaging, we model various optical spectra of the IsiA monomers and IsiA18 ring. Comparison of the absorption and emission spectra of the isolated IsiA monomers and the full ring reveals that about 2.7 chlorophylls (Chls) are lost in the isolated IsiA monomers. The best fits for isolated monomers spectra are obtained assuming the absence of Chl 508 and Chl 517 and 70% loss of Chl 511. The best model describing all three hexamers and the entire ring suggests that the lowest energy pigments are Chls 511, 514, and 517. Based on the modeling results presented in this work, we conclude that there are most likely three entry points for EET from the IsiA6 hexamer to the PSI core monomer, with two of these entry points likely being located next to each other (i.e., nine entry points from IsiA18 to the PSI3 trimer). Finally, we show that excitation energy transfer inside individual monomers is fast (<2 ps at T = 5 K) and at least 20 times faster than intermonomer energy transfer.


Asunto(s)
Cianobacterias , Complejo de Proteína del Fotosistema I , Proteínas Bacterianas/química , Clorofila/química , Cianobacterias/química , Complejos de Proteína Captadores de Luz/química , Complejo de Proteína del Fotosistema I/química , Espectrometría de Fluorescencia
3.
ACS Omega ; 6(8): 5990-6008, 2021 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-33681637

RESUMEN

Significant protein rearrangement upon excitation and energy transfer in Fenna-Matthews-Olson protein of Prosthecochloris aestuarii results in a modified energy landscape, which induces more changes in pigment site energies than predicted by the "standard" hole-burning theory. The energy changes are elucidated by simulations while investigating the effects of site-dependent disorder, both static (site-energy distribution widths) and dynamic (spectral density shapes). The resulting optimized site energies and their fluctuations are consistent with relative differences observed in inhomogeneous widths calculated by recent molecular dynamic simulations. Two sets of different spectral densities reveal how their shapes affect the population dynamics and distribution of exciton lifetimes. Calculations revealed the wavelength-dependent distributions of exciton lifetimes (T 1) in the femtosecond to picosecond time frame. We suggest that the calculated multimodal and asymmetric wavelength-dependent T 1 distributions offer more insight into the interpretation of resonant hole-burned (HB) spectra, kinetic traces in two-dimensional (2D) electronic spectroscopy experiments, and widely used global analyses in fitting data from transient absorption experiments.

4.
J Chem Phys ; 154(8): 085101, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33639775

RESUMEN

To provide more insight into the excitonic structure and exciton lifetimes of the wild type (WT) CP29 complex of photosystem II, we measured high-resolution (low temperature) absorption, emission, and hole burned spectra for the A2 and B3 mutants, which lack chlorophylls a612 and b614 (Chls), respectively. Experimental and modeling results obtained for the WT CP29 and A2/B3 mutants provide new insight on the mutation-induced changes at the molecular level and shed more light on energy transfer dynamics. Simulations of the A2 and B3 optical spectra, using the second-order non-Markovian theory, and comparison with improved fits of WT CP29 optical spectra provide more insight into their excitonic structure, mutation induced changes, and frequency-dependent distributions of exciton lifetimes (T1). A new Hamiltonian obtained for WT CP29 reveals that deletion of Chls a612 or b614 induces changes in the site energies of all remaining Chls. Hamiltonians obtained for A2 and B3 mutants are discussed in the context of the energy landscape of chlorophylls, excitonic structure, and transfer kinetics. Our data suggest that the lowest exciton states in A2 and B3 mutants are contributed by a611(57%), a610(17%), a615(15%) and a615(58%), a611(20%), a612(15%) Chls, respectively, although other compositions of lowest energy states are also discussed. Finally, we argue that the calculated exciton decay times are consistent with both the hole-burning and recent transient absorption measurements. Wavelength-dependent T1 distributions offer more insight into the interpretation of kinetic traces commonly described by discrete exponentials in global analysis/global fitting of transient absorption experiments.


Asunto(s)
Complejo de Proteína del Fotosistema II/química , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Complejo de Proteína del Fotosistema II/genética , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Espectrometría de Fluorescencia
5.
Nat Commun ; 11(1): 6015, 2020 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-33219216

RESUMEN

A Correction to this paper has been published: https://doi.org/10.1038/s41467-020-19953-w.

6.
Nat Commun ; 11(1): 5279, 2020 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-33077842

RESUMEN

Photosystem I coordinates more than 90 chlorophylls in its core antenna while achieving near perfect quantum efficiency. Low energy chlorophylls (also known as red chlorophylls) residing in the antenna are important for energy transfer dynamics and yield, however, their precise location remained elusive. Here, we construct a chimeric Photosystem I complex in Synechocystis PCC 6803 that shows enhanced absorption in the red spectral region. We combine Cryo-EM and spectroscopy to determine the structure-function relationship in this red-shifted Photosystem I complex. Determining the structure of this complex reveals the precise architecture of the low energy site as well as large scale structural heterogeneity which is probably universal to all trimeric Photosystem I complexes. Identifying the structural elements that constitute red sites can expand the absorption spectrum of oxygenic photosynthetic and potentially modulate light harvesting efficiency.

7.
J Phys Chem B ; 124(39): 8504-8515, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32852954

RESUMEN

To identify the molecular composition of the low-energy states in cyanobacterial Photosystem I (PSI) of Synechocystis PCC6803, we focus on high-resolution (low-temperature) absorption, emission, resonant, and nonresonant hole-burned spectra obtained for wild-type (WT) PSI and three PSI mutants. In the Red_a mutant, the B33 chlorophyll (Chl) is added to the B31-B32 dimer; in Red_b, histidine 95 (His95) on PsaB (which coordinates Mg in the B7 Chl within the His95-B7-A31-A32-cluster) is replaced with glutamine (Gln), while in the Red_ab mutant, both mutations are made. We show that the C706 state (B31-B32) changes to the C710 state (B31-B32-B33) in both Red_a and Red_ab mutants, while the C707 state in WT Synechocystis (localized on the His95-B7-A31-A32 cluster) is modified to C716 in both Red_b and Red_ab. Excitation energy transfer from C706 to the C714 trap in the WT PSI and Red_b mutant is hampered as reflected by a weak emission at 712 nm. Large electron-phonon coupling strength (exposed via resonant hole-burned spectra) is consistent with a strong mixing of excited states with intermolecular charge transfer states leading to significantly red-shifted emission spectra. We conclude that excitation energy transfer in PSI is controlled by fine-tuning the electronic states of a small number of highly conserved red states. Finally, we show that mutations modify the protein potential energy landscape as revealed by different shapes and shifts of the blue- and red-shifted antiholes.


Asunto(s)
Complejo de Proteína del Fotosistema I , Synechocystis , Clorofila , Transferencia de Energía , Complejo de Proteína del Fotosistema I/genética , Complejo de Proteína del Fotosistema I/metabolismo , Complejo de Proteína del Fotosistema II , Espectrometría de Fluorescencia , Synechocystis/genética
8.
J Phys Chem B ; 123(46): 9786-9791, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31660744

RESUMEN

Recently, a hybrid approach combining solid-state NMR spectroscopy and cryo-electron microscopy showed that the baseplate in green sulfur bacterium Chlorobaculum tepidum is a 2D lattice of BChl a-CsmA dimers [Nielsen, J. T.; et al., Nat. Commun. 2016, 7, 12454-12465]. While the existence of the BChl a-CsmA subunit was previously known, the proposed orientations of the BChl a pigments had only been elucidated from spectral data up to this point. Regarding the electronic structure of the baseplate, two models have been proposed. 2D electronic spectroscopy data were interpreted as revealing that at least four excitonically coupled BChl a might be in close contact. Conversely, spectral hole burning data suggested that the lowest energy state was localized, yet additional states are sometimes observed because of the presence of the Fenna-Matthews-Olson (FMO) antenna protein. To solve this conundrum, this work studies the chlorosome-baseplate complex from Chloroflexus aurantiacus, which does not contain the FMO protein. The results confirm that in both C. tepidum and C. aurantiacus, excitation energy is transferred to a localized low-energy trap state near 818 nm with similar rates, most likely via exciton hopping.


Asunto(s)
Proteínas Bacterianas/química , Bacterioclorofilas/química , Chloroflexus/metabolismo , Transferencia de Energía , Proteínas Bacterianas/metabolismo , Bacterioclorofilas/metabolismo , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Temperatura
9.
J Phys Chem B ; 123(41): 8717-8726, 2019 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-31539255

RESUMEN

Low-temperature persistent and transient hole-burning (HB) spectra are presented for the triple hydrogen-bonded L131LH + M160LH + M197FH mutant of Rhodobacter sphaeroides. These spectra expose the heterogeneous nature of the P-, B-, and H-bands, consistent with a distribution of electron transfer (ET) times and excitation energy transfer (EET) rates. Transient P+QA- holes are observed for fast (tens of picoseconds or faster) ET times and reveal strong coupling to phonons and marker mode(s), while the persistent holes are bleached in a fraction of reaction centers with long-lived excited states characterized by much weaker electron-phonon coupling. Exposed differences in electron-phonon coupling strength, as well as a different coupling to the marker mode(s), appear to affect the ET times. Both resonantly and nonresonantly burned persistent HB spectra show weak blue- (∼150 cm-1) and large, red-shifted (∼300 cm-1) antiholes of the P band. Slower EET times from the H- and B-bands to the special pair dimer provide new insight on the influence of hydrogen bonds on mutation-induced heterogeneity.


Asunto(s)
Electrones , Fonones , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/metabolismo , Transporte de Electrón , Transferencia de Energía , Enlace de Hidrógeno
10.
J Phys Chem B ; 123(28): 6007-6013, 2019 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-31265294

RESUMEN

For the first time, we combined Monte Carlo and nonphotochemical hole burning (NPHB) master equation approaches to allow for ultrahigh-resolution (<0.005 cm-1, smaller than the typical homogeneous line widths at 5 K) simulations of the NPHB spectra of dimers and trimers of interacting pigments. These simulations reveal significant differences between the zero-phonon hole (ZPH) action spectrum and the site-distribution function (SDF) of the lowest-energy state. The NPHB of the lowest-energy pigment, following the excitation energy transfer (EET) from the higher-energy pigments which are excited directly, results in the shifts of all excited states. These shifts affect the ZPH action spectra and EET times derived from the widths of the spectral holes burned in the donor-dominated regions. The effect is present for a broad variety of realistic antihole functions, and it is maximal at relatively low values of interpigment coupling (V ≤ 5 cm-1) where the use of the Förster approximation is justified. These findings need to be considered in interpreting various optical spectra of photosynthetic pigment-protein complexes for which SDFs (describing the inhomogeneous broadening) are often obtained directly from the ZPH action spectra. Water-soluble chlorophyll-binding protein (WSCP) was considered as an example.


Asunto(s)
Proteínas de Unión a Clorofila/metabolismo , Modelos Biológicos , Fotosíntesis , Pigmentos Biológicos/metabolismo , Método de Montecarlo , Termodinámica
11.
J R Soc Interface ; 16(151): 20180882, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30958204

RESUMEN

The Fenna-Matthews-Olson (FMO) light-harvesting antenna protein of green sulfur bacteria is a long-studied pigment-protein complex which funnels energy from the chlorosome to the reaction centre where photochemistry takes place. The structure of the FMO protein from Chlorobaculum tepidum is known as a homotrimeric complex containing eight bacteriochlorophyll a per monomer. Owing to this structure FMO has strong intra-monomer and weak inter-monomer electronic coupling constants. While long-lived (sub-picosecond) coherences within a monomer have been a prevalent topic of study over the past decade, various experimental evidence supports the presence of subsequent inter-monomer energy transfer on a picosecond time scale. The latter has been neglected by most authors in recent years by considering only sub-picosecond time scales or assuming that the inter-monomer coupling between low-energy states is too weak to warrant consideration of the entire trimer. However, Förster theory predicts that energy transfer of the order of picoseconds is possible even for very weak (less than 5 cm-1) electronic coupling between chromophores. This work reviews experimental data (with a focus on emission and hole-burned spectra) and simulations of exciton dynamics which demonstrate inter-monomer energy transfer. It is shown that the lowest energy 825 nm absorbance band cannot be properly described by a single excitonic state. The energy transfer through FMO is modelled by generalized Förster theory using a non-Markovian, reduced density matrix approach to describe the electronic structure. The disorder-averaged inter-monomer transfer time across the 825 nm band is about 27 ps. While only isolated FMO proteins are presented, the presence of inter-monomer energy transfer in the context of the overall photosystem is also briefly discussed.


Asunto(s)
Proteínas Bacterianas/química , Chlorobi/enzimología , Complejos de Proteína Captadores de Luz/química , Modelos Químicos , Proteínas Bacterianas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo
12.
J Phys Chem B ; 123(4): 852-859, 2019 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-30624937

RESUMEN

Excitonic interactions between two closely separated bacteriochlorophyll a molecules (BChls) in the special pair of the reaction center (RC) of purple bacteria determine the positions and relative oscillator strengths of its two excitonic components. While the absorption of the lower excitonic band is well-defined, the position and the intensity of the upper excitonic band ( PY+) are still under debate. Recent 77 K two-dimensional electronic spectroscopy data on Rba. capsulatus suggested that the PY+ component absorbs at ∼840 nm, i.e., at a significantly lower energy than previously suggested. In the present work, we argue that the PY+ state is mixed with the excited states of the accessory BChls ( B*/ P Y+) leading to excitons contributing to the 785-825 nm spectral region which is consistent with previously published data. This conclusion is based on hole-burning/linear dichroism data and modeling studies of the excitonic structure of the RC using a non-Markovian reduced density matrix approach.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/enzimología , Bacterioclorofilas/metabolismo
13.
J Phys Chem Lett ; 9(14): 4125-4129, 2018 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-29985632

RESUMEN

The LH2 antenna complex of the purple bacterium Allochromatium vinosum has a distinct double peak structure of the 800 nm band (B800). Several hypotheses were proposed to explain its origin. Recent 77 K two-dimensional electronic spectroscopy data suggested that excitonic coupling of dimerized bacteriochlorophylls (BChls) within the B800 ring is largely responsible for the B800 split [M. Schröter et al., J. Phys. Chem. Lett. 2018, 9, 1340]. Here we argue that the excitonic interactions between BChls in the B800 ring, though present, are weak and cannot explain the B800 band split. This conclusion is based on hole-burning data and modeling studies using an exciton model with dichotomous protein conformation disorder. Therefore, we uphold our earlier interpretation, first reported by Kell et al. [ J. Phys. Chem. B 2017, 121, 9999], that the two B800 sub-bands are due to different site-energies (most likely due to weakly and strongly hydrogen-bonded B800 BChls).

14.
J Phys Chem Lett ; 9(12): 3378-3386, 2018 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-29863366

RESUMEN

Hole burning (HB) spectroscopy and modeling studies reveal significant changes in the excitonic structure and dynamics in several mutants of the FMO trimer from the Chlorobaculum tepidum. The excited-state decay times ( T1) of the high-energy excitons are significantly modified when mutation occurs near bacteriochlorophyll (BChl) 1 (V152N mutant) or BChl 6 (W184F). Longer (averaged) T1 times of highest-energy excitons in V152N and W184F mutants suggest that site energies of BChls 1 and 6, believed to play an important role in receiving excitation from the baseplate BChls, likely play a critical role to ensure the femtosecond (fs) energy relaxation observed in wild-type FMO. HB spectroscopy reveals preferentially slower T1 times (about 1 ps on average) because fs times prohibit HB due to an extremely low HB quantum yield. Uncorrelated (incoherent) excitation energy transfer times between monomers, the composition of exciton states, and average, frequency-dependent, excited-state decay times ( T1) are discussed.

15.
J Phys Chem B ; 122(17): 4611-4624, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29620369

RESUMEN

We provide an analysis of the pigment composition of reconstituted wild type CP29 complexes. The obtained stoichiometry of 9 ± 0.6 Chls a and 3 ± 0.6 Chls b per complex, with some possible heterogeneity in the carotenoid binding, is in agreement with 9 Chls a and 3.5 Chls b revealed by the modeling of low-temperature optical spectra. We find that ∼50% of Chl b614 is lost during the reconstitution/purification procedure, whereas Chls a are almost fully retained. The excitonic structure and the nature of the low-energy (low-E) state(s) are addressed via simulations (using Redfield theory) of 5 K absorption and fluorescence/nonresonant hole-burned (NRHB) spectra obtained at different excitation/burning conditions. We show that, depending on laser excitation frequency, reconstituted complexes display two (independent) low-E states (i.e., the A and B traps) with different NRHB and emission spectra. The red-shifted state A near 682.4 nm is assigned to a minor (∼10%) subpopulation (sub. II) that most likely originates from an imperfect local folding occurring during protein reconstitution. Its lowest energy state A (localized on Chl a604) is easily burned with λB = 488.0 nm and has a red-shifted fluorescence origin band near 683.7 nm that is not observed in native (isolated) complexes. Prolonged burning by 488.0 nm light reveals a second low-E trap at 680.2 nm (state B) with a fluorescence origin band at ∼681 nm, which is also observed when using a direct low-fluence excitation near 650 nm. The latter state is mostly delocalized over the a611, a612, a615 Chl trimer and corresponds to the lowest energy state of the major (∼90%) subpopulation (sub. I) that exhibits a lower hole-burning quantum yield. Thus, we suggest that major sub. I correspond to the native folding of CP29, whereas the red shift of the Chl a604 site energy observed in the minor sub. II occurs only in reconstituted complexes.

16.
J Phys Chem B ; 122(14): 3734-3743, 2018 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-29554425

RESUMEN

We report high-resolution (low-temperature) absorption, emission, and nonresonant/resonant hole-burned (HB) spectra and results of excitonic calculations using a non-Markovian reduced density matrix theory (with an improved algorithm for parameter optimization in heterogeneous samples) obtained for the Y16F mutant of the Fenna-Matthews-Olson (FMO) trimer from the green sulfur bacterium Chlorobium tepidum. We show that the Y16F mutant is a mixture of FMO complexes with three independent low-energy traps (located near 817, 821, and 826 nm), in agreement with measured composite emission and HB spectra. Two of these traps belong to mutated FMO subpopulations characterized by significantly modified low-energy excitonic states. Hamiltonians for the two major subpopulations (Sub821 and Sub817) provide new insight into extensive changes induced by the single-point mutation in the vicinity of BChl 3 (where tyrosine Y16 was replaced with phenylalanine F16). The average decay time(s) from the higher exciton state(s) in the Y16F mutant depends on frequency and occurs on a picosecond time scale.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Chlorobium/química , Chlorobium/genética , Transferencia de Energía , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Espectrometría de Fluorescencia , Fenilalanina , Fotosíntesis , Tirosina
18.
Biochim Biophys Acta Bioenerg ; 1859(3): 165-173, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29198987

RESUMEN

We discuss the excitonic energy landscape of the typically studied wild-type (WT) Fenna-Matthews-Olson (FMO) antenna protein from the green sulfur bacterium Chlorobaculum tepidum (referred to as WTM), which is described as a mixture of intact (WTI) and destabilized (WTD) complexes. Optical spectra of WTM and the L122Q mutant (where leucine 122 near BChl 8 is replaced with glutamine) are compared to WTI FMO. We show that WTM and L122Q samples are mixtures of two subpopulations of proteins, most likely induced by protein conformational changes during the isolation/purification procedures. Absorption, emission, and HB spectra of WTM and L122Q mutant are very similar, in which the low-energy trap (revealed by the nonresonant HB spectra) shifts to higher energies as a function of fluence, supporting a mixture model. No fluence-dependent shift is observed in the WTI FMO trimers. New Hamiltonians are provided for WTI and WTD proteins. Resonant HB spectra show that the internal energy relaxation times in the WTM and L122Q mutant are similar, and depend on excitation frequency. Fast average relaxation times (excited state lifetimes) are observed for burning into the main broad absorption band near 805nm. Burning at longer wavelengths reveals slower total dephasing times. No resonant bleach is observed at λB≤803nm, implying much faster (femtosecond) energy relaxation in this spectral range in agreement with 2D electronic spectroscopy frequency maps.


Asunto(s)
Proteínas Bacterianas/genética , Chlorobi/genética , Transferencia de Energía , Complejos de Proteína Captadores de Luz/genética , Mutación , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Bacterioclorofila A/química , Bacterioclorofila A/metabolismo , Sitios de Unión , Chlorobi/metabolismo , Cristalografía por Rayos X , Complejos de Proteína Captadores de Luz/química , Complejos de Proteína Captadores de Luz/metabolismo , Modelos Moleculares , Estructura Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína , Análisis Espectral , Temperatura
19.
J Phys Chem B ; 122(4): 1348-1366, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29172525

RESUMEN

Spectroscopically relevant properties in photosynthetic reaction centers change during charge separation. In this paper, we focus on incorporation of the complete set of environmental fluctuations in the modeling of the nonlinear spectra of molecular aggregates. The model is applied in simulations of two-dimensional electronic spectra of a photosynthetic reaction center at low temperature (5 K), where spectral lines are narrow, such that more features can be resolved. We show that vertical cross sections of the simulated two-dimensional spectra (with all populations in the lowest excited state) reveal transient hole-burned spectra excited resonantly within the B band in agreement with experiment, thus providing new insight into environmental fluctuation parameters of Rhodobacter sphaeroides at low temperatures. Correlated fluctuations of molecular parameters are found to be necessary to describe charge separated configurations of molecular excited states.


Asunto(s)
Simulación de Dinámica Molecular , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Rhodobacter sphaeroides/química , Rhodobacter sphaeroides/metabolismo , Temperatura , Agregado de Proteínas , Análisis Espectral
20.
J Phys Chem B ; 121(43): 9999-10006, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29017010

RESUMEN

The B800-850 LH2 antenna from the photosynthetic purple sulfur bacterium Allochromatium vinosum exhibits an unusual spectral splitting of the B800 absorption band; i.e., two bands are well-resolved at 5 K with maxima at 805 nm (B800R) and 792 nm (B800B). To provide more insight into the nature of the B800 bacteriochlorophyll (BChl) a molecules, high-resolution hole-burning (HB) spectroscopy is employed. Both white light illumination and selective laser excitations into B800R or B800B lead to B800R → B800B phototransformation. Selective excitation into B800B leads to uncorrelated excitation energy transfer (EET) to B800R and subsequent B800R → B800B phototransformation. The B800B → B800R EET time is 0.9 ± 0.1 ps. Excitation at 808.4 nm (into the low-energy side of B800R) shows that the lower limit of B800R → B850 EET is about 2 ps, as the B800R → B800B phototransformation process could contribute to the corresponding zero-phonon hole width. The phototransformation of B800R leads to a ∼ 200 cm-1 average blue-shift of transition energies, i.e., B800R changes into B800B. We argue that it is unlikely that B800-B850 excitonic interactions give rise to a splitting of the B800 band. We propose that the latter is caused by different protein conformations that can lead to both strong or weak hydrogen bond(s) between B800 pigments and the protein scaffolding. Temperature-dependent absorption spectra of B800, which revealed a well-defined isosbestic point, support a two-site model, likely with strongly and weakly hydrogen-bonded B800 BChls. Thus, BChls contributing to B800R and B800B could differ in the position of the proton in the BChl carbonyl-protein hydrogen bond, i.e., proton dynamics along the hydrogen bond may well be the major mechanism of this phototransformation. However, the effective tunneling mass is likely larger than the proton mass.


Asunto(s)
Chromatiaceae/química , Chromatiaceae/efectos de la radiación , Complejos de Proteína Captadores de Luz/metabolismo , Luz , Procesos Fotoquímicos/efectos de la radiación , Enlace de Hidrógeno , Complejos de Proteína Captadores de Luz/química , Modelos Moleculares , Bacterias Reductoras del Azufre/química , Bacterias Reductoras del Azufre/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...