Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol ; 24(1): 126, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-37217943

RESUMEN

Single nucleotide variants (SNVs) contribute to human genomic diversity. Synonymous SNVs are previously considered to be "silent," but mounting evidence has revealed that these variants can cause RNA and protein changes and are implicated in over 85 human diseases and cancers. Recent improvements in computational platforms have led to the development of numerous machine-learning tools, which can be used to advance synonymous SNV research. In this review, we discuss tools that should be used to investigate synonymous variants. We provide supportive examples from seminal studies that demonstrate how these tools have driven new discoveries of functional synonymous SNVs.


Asunto(s)
Neoplasias , Polimorfismo de Nucleótido Simple , Humanos , ARN , Aprendizaje Automático
2.
STAR Protoc ; 3(3): 101648, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36052345

RESUMEN

Here, we describe a bioinformatics pipeline that evaluates the interactions between coagulation-related proteins and genetic variants with SARS-CoV-2 proteins. This pipeline searches for host proteins that may bind to viral protein and identifies and scores the protein genetic variants to predict the disease pathogenesis in specific subpopulations. Additionally, it is able to find structurally similar motifs and identify potential binding sites within the host-viral protein complexes to unveil viral impact on regulated biological processes and/or host-protein impact on viral invasion or reproduction. For complete details on the use and execution of this protocol, please refer to Holcomb et al. (2021).


Asunto(s)
COVID-19 , SARS-CoV-2 , Sitios de Unión , COVID-19/genética , Interacciones Microbiota-Huesped , Humanos , SARS-CoV-2/genética , Proteínas Virales/genética
3.
Blood Adv ; 6(18): 5364-5378, 2022 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-35667091

RESUMEN

The effects of synonymous single nucleotide variants (sSNVs) are often neglected because they do not alter protein primary structure. Nevertheless, there is growing evidence that synonymous variations may affect messenger RNA (mRNA) expression and protein conformation and activity, which may lead to protein deficiency and disease manifestations. Because there are >21 million possible sSNVs affecting the human genome, it is not feasible to experimentally validate the effect of each sSNV. Here, we report a comprehensive series of in silico analyses assessing sSNV impact on a specific gene. ADAMTS13 was chosen as a model for its large size, many previously reported sSNVs, and associated coagulopathy thrombotic thrombocytopenic purpura. Using various prediction tools of biomolecular characteristics, we evaluated all ADAMTS13 sSNVs registered in the National Center for Biotechnology Information database of single nucleotide polymorphisms, including 357 neutral sSNVs and 19 sSNVs identified in patients with thrombotic thrombocytopenic purpura. We showed that some sSNVs change mRNA-folding energy/stability, disrupt mRNA splicing, disturb microRNA-binding sites, and alter synonymous codon or codon pair usage. Our findings highlight the importance of considering sSNVs when assessing the complex effects of ADAMTS13 alleles, and our approach provides a generalizable framework to characterize sSNV impact in other genes and diseases.


Asunto(s)
MicroARNs , Púrpura Trombocitopénica Trombótica , Proteína ADAMTS13/genética , Codón , Humanos , Nucleótidos , Púrpura Trombocitopénica Trombótica/genética , ARN Mensajero/genética
4.
Front Med (Lausanne) ; 7: 617373, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33330577

RESUMEN

The introduction of pathogen reduction technologies (PRTs) to inactivate bacteria, viruses and parasites in donated blood components stored for transfusion adds to the existing arsenal toward reducing the risk of transfusion-transmitted infectious diseases (TTIDs). We have previously demonstrated that 405 nm violet-blue light effectively reduces blood-borne bacteria in stored human plasma and platelet concentrates. In this report, we investigated the microbicidal effect of 405 nm light on one important bloodborne parasite Trypanosoma cruzi that causes Chagas disease in humans. Our results demonstrated that a light irradiance at 15 mWcm-2 for 5 h, equivalent to 270 Jcm-2, effectively inactivated T. cruzi by over 9.0 Log10, in plasma and platelets that were evaluated by a MK2 cell infectivity assay. Giemsa stained T. cruzi infected MK2 cells showed that the light-treated parasites in plasma and platelets were deficient in infecting MK2 cells and did not differentiate further into intracellular amastigotes unlike the untreated parasites. The light-treated and untreated parasite samples were then evaluated for any residual infectivity by injecting the treated parasites into Swiss Webster mice, which did not develop infection even after the animals were immunosuppressed, further demonstrating that the light treatment was completely effective for inactivation of the parasite; the light-treated platelets had similar in vitro metabolic and biochemical indices to that of untreated platelets. Overall, these results provide a proof of concept toward developing 405 nm light treatment as a pathogen reduction technology (PRT) to enhance the safety of stored human plasma and platelet concentrates from bloodborne T. cruzi, which causes Chagas disease.

5.
Sci Rep ; 10(1): 18593, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-33122796

RESUMEN

Reliable and reproducible monitoring of the conformational state of therapeutic protein products remains an unmet technological need. This need is amplified by the increasing number of biosimilars entering the drug development pipeline as many branded biologics are reaching the end of their market exclusivity period. Availability of methods to better characterize protein conformation may improve detection of counterfit and unlicensed therapeutic proteins. In this study, we report the use of a set of modified DNA aptamers with enhanced chemical diversity to probe the conformational state of 12 recombinant human erythropoietin (rHuEPO) therapeutic protein products; one FDA-licensed rHuEPO originator biological product, three rHuEPO products that are approved for marketing in the US or EU as biosimilars, and eight rHuEPO products that are not approved for marketing in the US or EU. We show that several of these modified aptamers are able to distinguish rHuEPO reference products or approved biosimilars from non-licensed rHuEPO products on the basis of differences in binding kinetics and equilibrium affinity constants. These reagents exhibit sensitivity to the conformational integrity of various forms of rHuEPO and as such represent powerful, simple-to-use analytical tools to monitor the conformational integrity of therapeutic-proteins during manufacture and to screen for and identify both substandard and counterfeit products.


Asunto(s)
Aptámeros de Nucleótidos/química , Eritropoyetina/química , Indicadores y Reactivos/química , Proteínas Recombinantes/química , Biosimilares Farmacéuticos/química , Humanos , Mercadotecnía/métodos , Conformación Proteica
6.
Front Cell Dev Biol ; 8: 669, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32850803

RESUMEN

Hemophilia A (HA) is a F8 gene mutational disorder resulting in deficiency or dysfunctional FVIII protein. However, surprisingly, in few cases, HA is manifested even without mutations in F8. To understand this anomaly, we recently sequenced microRNAs (miRNAs) of two patients with mild and moderate HA with no F8 gene mutations and selected two highly expressing miRNAs, miR-374b-5p and miR-30c-5p, from the pool to explain the FVIII deficiency that could be mediated by miRNA-based F8/FVIII suppression. In this report, an established orthogonal in vivo RNA-affinity purification approach was utilized to directly identify a group of F8-interacting miRNAs and we tested them for F8/FVIII suppression. From this pool, two miRNAs, miR-19b-3p and miR-186-5p, were found to be upregulated in a severe HA patient with a mutation in the F8 coding sequence and two HA patients without mutations in the F8 coding sequence were selected to demonstrate their role in F8 gene expression regulation in mammalian cells. Overall, these results provide further evidence for the hypothesis that by targeting the 3'UTR of F8, miRNAs can modulate FVIII protein levels. This mechanism could either be the primary cause of HA in patients who lack F8 mutations or control the severity of the disease in patients with F8 mutations.

7.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781510

RESUMEN

Hemophilia A (HA) is associated with defects in the F8 gene, encoding coagulation factor VIII (FVIII). Our previous studies show that F8-targeting micro RNAs (miRNAs), a group of small RNAs involved in gene regulation, can downregulate F8 expression causing HA in individuals with normal F8-genotypes and increased HA severity in patients with mutations in F8. Understanding the mechanistic underpinnings of human genetic diseases caused or modulated by miRNAs require a small animal model, such as a mouse model. Here, we report a foundational study to develop such a model system. We identified the mouse 3'untranslated region (3'UTR) on murine F8-mRNA (muF8-mRNA) that can bind to murine miRNAs. We then selected three miRNAs for evaluation: miR-208a, miR-351 and miR-125a. We first demonstrate that these three miRNAs directly target the 3'UTR of muF8-mRNA and reduce the expression of a reporter gene (luciferase) mRNA fused to the muF8-3' UTR in mammalian cells. Furthermore, in mouse cells that endogenously express the F8 gene and produce FVIII protein, the ectopic expression of these miRNAs downregulated F8-mRNA and FVIII protein. These results provide proof-of-concept and reagents as a foundation for using a normal F8-containing mouse as a model for the miRNA regulation of normal F8 in causing or aggravating the genetic disease HA.


Asunto(s)
Regiones no Traducidas 3'/genética , Regulación hacia Abajo/genética , Factor VIII/genética , Hemofilia A/genética , MicroARNs/genética , Animales , Secuencia de Bases , Modelos Animales de Enfermedad , Células HEK293 , Células HeLa , Humanos , Ratones , MicroARNs/metabolismo
8.
Int J Mol Sci ; 21(10)2020 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443696

RESUMEN

MicroRNAs (miRNA) play an important role in gene expression at the posttranscriptional level by targeting the untranslated regions of messenger RNA (mRNAs). These small RNAs have been shown to control cellular physiological processes including cell differentiation and proliferation. Dysregulation of miRNAs have been associated with numerous diseases. In the past few years miRNAs have emerged as potential biopharmaceuticals and the first miRNA-based therapies have entered clinical trials. Our recent studies suggest that miRNAs may also play an important role in the pathology of genetic diseases that are currently considered to be solely due to mutations in the coding sequence. For instance, among hemophilia A patients there exist a small subset, with normal wildtype genes; i.e., lacking in mutations in the coding and non-coding regions of the F8 gene. Similarly, in many patients with missense mutations in the F8 gene, the genetic defect does not fully explain the severity of the disease. Dysregulation of miRNAs that target mRNAs encoding coagulation factors have been shown to disturb gene expression. Alterations in protein levels involved in the coagulation cascade mediated by miRNAs could lead to bleeding disorders or thrombosis. This review summarizes current knowledge on the role of miRNAs in hemophilia and thrombosis. Recognizing and understanding the functions of miRNAs by identifying their targets is important in identifying their roles in health and diseases. Successful basic research may result in the development and improvement of tools for diagnosis, risk evaluation or even new treatment strategies.


Asunto(s)
Hemofilia A/genética , MicroARNs/genética , Trombosis/genética , Factores de Coagulación Sanguínea/genética , Factores de Coagulación Sanguínea/metabolismo , Hemofilia A/metabolismo , Humanos , MicroARNs/metabolismo , Trombosis/metabolismo
9.
Transfusion ; 60(2): 401-413, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31785023

RESUMEN

BACKGROUND: Hemophilia A (HA) is associated with mutations in the F8 gene that expresses factor VIII (FVIII). Unexpectedly, HA also manifests in a small subset of individuals with no mutations (exonic or intronic) in their F8 gene. MicroRNAs (miRNAs) cause translational interference, affecting protein quality and stoichiometry. Here, by analyzing miRNAs of two patients from this subset, we evaluated miRNA-based FVIII suppression as a testable hypothesis to explain FVIII deficiency in patients with HA with no F8 gene mutations. STUDY DESIGN AND METHODS: To test the hypothesis, miRNA sequencing from two patients with mild and moderate HA with no mutations in their F8 gene, followed by experimental verification, was used to identify a group of upregulated miRNAs in patients with HA compared to normal controls; with binding sites in the 3' untranslated region (UTR) of F8 messenger RNA (mRNA), a prerequisite for miRNA-based gene regulation. From this pool, miR-374b-5p and miR-30c-5p, known to be expressed in human liver, where FVIII is expressed, were subjected to extensive characterization. RESULTS: In two cell lines that constitutively express FVIII, we demonstrated that overexpression of miR-374b or miR-30c decreased FVIII expression, while an miR-30c inhibitor partially restored FVIII expression. CONCLUSION: These data support a role for microRNAs in fine-tuning F8 gene regulation. Based on our findings, our current model suggests that in HA cases where the F8 gene is normal and is predicted to express normal levels of FVIII, F8 mRNA 3' UTR targeting miRNAs may be responsible for a FVIII-deficiency phenotype clinically manifesting as HA.


Asunto(s)
Factor VIII/genética , Hemofilia A/genética , Hemofilia A/patología , Mutación/genética , Western Blotting , Línea Celular , Técnica del Anticuerpo Fluorescente , Células HEK293 , Células HeLa , Células Endoteliales de la Vena Umbilical Humana , Humanos , MicroARNs/genética , ARN Mensajero/genética , Análisis de Secuencia de ARN
10.
Blood Adv ; 3(17): 2668-2678, 2019 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-31506285

RESUMEN

Vatreptacog alfa (VA), a recombinant activated human factor VII (rFVIIa) variant with 3 amino acid substitutions, was developed to provide increased procoagulant activity in hemophilia patients with inhibitors to factor VIII or factor IX. In phase 3 clinical trials, changes introduced during the bioengineering of VA resulted in the development of undesired anti-drug antibodies in some patients, leading to the termination of a potentially promising therapeutic protein product. Here, we use preclinical biomarkers associated with clinical immunogenicity to validate our deimmunization strategy applied to this bioengineered rFVIIa analog. The reengineered rFVIIa analog variants retained increased intrinsic thrombin generation activity but did not elicit T-cell responses in peripheral blood mononuclear cells isolated from 50 HLA typed subjects representing the human population. Our algorithm, rational immunogenicity determination, offers a broadly applicable deimmunizing strategy for bioengineered proteins.


Asunto(s)
Factor VIIa/genética , Ingeniería de Proteínas/métodos , Linfocitos T/inmunología , Pruebas de Coagulación Sanguínea , Células Cultivadas , Factor VIIa/farmacología , Hemofilia A/tratamiento farmacológico , Humanos , Fenómenos Inmunogenéticos/efectos de los fármacos , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacología , Linfocitos T/efectos de los fármacos , Trombina/biosíntesis
11.
Front Immunol ; 9: 25, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29403502

RESUMEN

Full T cell activation requires coordination of signals from multiple receptor-ligand pairs that interact in parallel at a specialized cell-cell contact site termed the immunological synapse (IS). Signaling at the IS is intimately associated with actin dynamics; T cell receptor (TCR) engagement induces centripetal flow of the T cell actin network, which in turn enhances the function of ligand-bound integrins by promoting conformational change. Here, we have investigated the effects of integrin engagement on actin flow, and on associated signaling events downstream of the TCR. We show that integrin engagement significantly decelerates centripetal flow of the actin network. In primary CD4+ T cells, engagement of either LFA-1 or VLA-4 by their respective ligands ICAM-1 and VCAM-1 slows actin flow. Slowing is greatest when T cells interact with low mobility integrin ligands, supporting a predominately drag-based mechanism. Using integrin ligands presented on patterned surfaces, we demonstrate that the effects of localized integrin engagement are distributed across the actin network, and that focal adhesion proteins, such as talin, vinculin, and paxillin, are recruited to sites of integrin engagement. Further analysis shows that talin and vinculin are interdependent upon one another for recruitment, and that ongoing actin flow is required. Suppression of vinculin or talin partially relieves integrin-dependent slowing of actin flow, indicating that these proteins serve as molecular clutches that couple engaged integrins to the dynamic actin network. Finally, we found that integrin-dependent slowing of actin flow is associated with reduction in tyrosine phosphorylation downstream of the TCR, and that this modulation of TCR signaling depends on expression of talin and vinculin. More generally, we found that integrin-dependent effects on actin retrograde flow were strongly correlated with effects on TCR signaling. Taken together, these studies support a model in which ligand-bound integrins engage the actin cytoskeletal network via talin and vinculin, and tune TCR signaling events by modulating actin dynamics at the IS.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Sinapsis Inmunológicas/inmunología , Integrina alfa4beta1/metabolismo , Activación de Linfocitos/inmunología , Receptores de Antígenos de Linfocitos T/inmunología , Talina/metabolismo , Vinculina/metabolismo , Actinas/metabolismo , Línea Celular Tumoral , Humanos , Molécula 1 de Adhesión Intercelular/metabolismo , Células Jurkat , Antígeno-1 Asociado a Función de Linfocito/metabolismo , Paxillin/metabolismo , Fosforilación , Transducción de Señal/inmunología , Tirosina/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
12.
Methods Mol Biol ; 1584: 7-29, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28255693

RESUMEN

T cell signaling is inextricably linked to actin cytoskeletal dynamics at the immunological synapse (IS). This process can be imaged in living T cells expressing GFP actin or fluorescent F-actin binding proteins. Because of its planar nature, the IS provides a unique opportunity to image events as they happen, monitoring changes in actin retrograde flow in T cells interacting with different stimulatory surfaces or after pharmacological treatments. Here, we described the imaging methods and analytical procedures used to measure actin velocity across the IS in T cells spreading on planar stimulatory surfaces.


Asunto(s)
Actinas/inmunología , Sinapsis Inmunológicas/inmunología , Linfocitos T/inmunología , Actinas/genética , Actinas/metabolismo , Animales , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Sinapsis Inmunológicas/genética , Sinapsis Inmunológicas/metabolismo , Células Jurkat , Ratones , Linfocitos T/citología , Linfocitos T/metabolismo
13.
Elife ; 52016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27440222

RESUMEN

T cell receptor (TCR) engagement opens Ca(2+) release-activated Ca(2+) (CRAC) channels and triggers formation of an immune synapse between T cells and antigen-presenting cells. At the synapse, actin reorganizes into a concentric lamellipod and lamella with retrograde actin flow that helps regulate the intensity and duration of TCR signaling. We find that Ca(2+) influx is required to drive actin organization and dynamics at the synapse. Calcium acts by promoting actin depolymerization and localizing actin polymerization and the actin nucleation promotion factor WAVE2 to the periphery of the lamellipod while suppressing polymerization elsewhere. Ca(2+)-dependent retrograde actin flow corrals ER tubule extensions and STIM1/Orai1 complexes to the synapse center, creating a self-organizing process for CRAC channel localization. Our results demonstrate a new role for Ca(2+) as a critical regulator of actin organization and dynamics at the synapse, and reveal potential feedback loops through which Ca(2+) influx may modulate TCR signaling.


Asunto(s)
Actinas/metabolismo , Células Presentadoras de Antígenos/fisiología , Canales de Calcio Activados por la Liberación de Calcio/metabolismo , Calcio/metabolismo , Adhesión Celular , Multimerización de Proteína , Linfocitos T/fisiología , Células Cultivadas , Humanos
14.
Biochemistry ; 51(7): 1431-8, 2012 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-22250969

RESUMEN

Metal substitution of heme proteins is widely applied in the study of biologically relevant electron transfer (ET) reactions. It has been shown that many modified proteins remain in their native conformation and can provide useful insights into the molecular mechanism of electron transfer between the native protein and its substrates. We investigated ET reactions between zinc-substituted cytochrome P450(cam) and small organic compounds such as quinones and ferrocene, which are capable of accessing the protein's hydrophobic channel and binding close to the active site, like its native substrate, camphor. Following the substitution method developed by Gunsalus and co-workers [Wagner, G. C., et al. (1981) J. Biol. Chem. 256, 6262-6265], we have identified two dominant forms of the zinc-substituted protein, F450 and F420, that exhibit different photophysical and photochemical properties. The ET behavior of F420 suggests that hydrophobic redox-active ligands are able to penetrate the hydrophobic channel and place themselves in the direct vicinity of the Zn-porphyrin. In contrast, the slower ET quenching rates observed in the case of F450 indicate that the association is weak and occurs outside of the protein channel. Therefore, we conclude that F420 corresponds to the open structure of the native cytochrome P450(cam) while F450 has a closed or partially closed channel that is characteristic of the camphor-containing cytochrome P450(cam). The existence of two distinct conformers of Zn-bound P450(cam) is consistent with the findings of Goodin and co-workers [Lee, Y.-T., et al. (2010) Biochemistry 49, 3412-3419] and has significant consequences for future electron transfer studies on this popular metalloenzyme.


Asunto(s)
Alcanfor 5-Monooxigenasa/química , Citocromos/química , Riboflavina/análogos & derivados , Zinc/química , Bioquímica/métodos , Dominio Catalítico , Transporte de Electrón , Escherichia coli/metabolismo , Hemo/química , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Fotoquímica/métodos , Unión Proteica , Conformación Proteica , Riboflavina/química , Espectrometría de Fluorescencia/métodos , Espectrofotometría/métodos
15.
J Am Chem Soc ; 132(46): 16423-31, 2010 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-21038913

RESUMEN

A water-soluble octacarboxyhemicarcerand was used as a shuttle to transport redox-active substrates across the aqueous medium and deliver them to the target protein. The results show that weak multivalent interactions and conformational flexibility can be exploited to reversibly bind complex supramolecular assemblies to biological molecules. Hydrophobic electron donors and acceptors were encapsulated within the hemicarcerand, and photoinduced electron transfer (ET) between the Zn-substituted cytochrome c (MW = 12.3 kD) and the host-guest complexes (MW = 2.2 kD) was used to probe the association between the negatively charged hemicarceplex and the positively charged protein. The behavior of the resulting ternary protein-hemicarcerand-guest assembly was investigated in two binding limits: (1) when K(encaps) ≫ K(assoc), the hemicarcerand transports the ligand to the protein while protecting it from the aqueous medium; and (2) when K(assoc) > K(encaps), the hemicarcerand-protein complex is formed first, and the hemicarcerand acts as an artificial receptor site that intercepts ligands from solution and positions them close to the active site of the metalloenzyme. In both cases, ET mediated by the protein-bound hemicarcerand is much faster than that due to diffusional encounters with the respective free donor or acceptor in solution. The measured ET rates suggest that the dominant binding region of the host-guest complex on the surface of the protein is consistent with the docking area of the native redox partner of cytochrome c. The strong association with the protein is attributed to the flexible conformation and adaptable charge distribution of the hemicarcerand, which allow for surface-matching with the cytochrome.


Asunto(s)
Citocromos c/química , Luz , Cristalografía por Rayos X , Transporte de Electrón , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Solubilidad , Termodinámica , Agua/química , Zinc/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...