Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 12(1): 1239, 2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33623010

RESUMEN

One of the main challenges in ultrafast material science is to trigger phase transitions with short pulses of light. Here we show how strain waves, launched by electronic and structural precursor phenomena, determine a coherent macroscopic transformation pathway for the semiconducting-to-metal transition in bistable Ti3O5 nanocrystals. Employing femtosecond powder X-ray diffraction, we measure the lattice deformation in the phase transition as a function of time. We monitor the early intra-cell distortion around the light absorbing metal dimer and the long range deformations governed by acoustic waves propagating from the laser-exposed Ti3O5 surface. We developed a simplified elastic model demonstrating that picosecond switching in nanocrystals happens concomitantly with the propagating acoustic wavefront, several decades faster than thermal processes governed by heat diffusion.

2.
Phys Rev Lett ; 121(1): 016601, 2018 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-30028165

RESUMEN

Out of equilibrium phenomena are a major issue of modern physics. In particular, correlated materials such as Mott insulators experience fascinating long-lived exotic states under a strong electric field. Yet, the origin of their destabilization by the electric field is not elucidated. Here we present a comprehensive study of the electrical response of canonical Mott insulators GaM_{4}Q_{8} (M=V, Nb, Ta, Mo; Q=S, Se) in the context of a microscopic theory of electrical breakdown where in-gap states allow for a description in terms of a two-temperature model. Our results show how the nonlinearities and the resistive transition originate from a massive creation of hot electrons under an electric field. These results give new insights for the control of the long-lived states reached under an electric field in these systems which has recently open the way to new functionalities used in neuromorphic applications.

3.
Dalton Trans ; 46(46): 16244-16250, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29136074

RESUMEN

BaSF was synthesised by a solid state reaction at high temperature and its crystal structure was determined thanks to X-ray diffraction on a single crystal. This transparent yellow fluorochalcogenide has an intergrowth structure built from the stacking of fluorite type layers and sulfur layers. In BaSF sulfur atoms form dimers with interatomic distances as short as 2.1074(10) Å. DFT calculations confirm that this compound is a band insulator with the Fermi level lying in between the antibonding π* and σ* molecular orbitals of the sulfur dimers. Reflectance measurements show that the optical band gap of BaSF is about 2.7 eV in good agreement with the value found from DFT calculations.

4.
Phys Rev Lett ; 118(24): 247401, 2017 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-28665649

RESUMEN

Femtosecond time-resolved x-ray diffraction is used to study a photoinduced phase transition between two charge density wave (CDW) states in 1T-TaS_{2}, namely the nearly commensurate (NC) and the incommensurate (I) CDW states. Structural modulations associated with the NC-CDW order are found to disappear within 400 fs. The photoinduced I-CDW phase then develops through a nucleation and growth process which ends 100 ps after laser excitation. We demonstrate that the newly formed I-CDW phase is fragmented into several nanometric domains that are growing through a coarsening process. The coarsening dynamics is found to follow the universal Lifshitz-Allen-Cahn growth law, which describes the ordering kinetics in systems exhibiting a nonconservative order parameter.

5.
Phys Rev Lett ; 113(8): 086404, 2014 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-25192113

RESUMEN

The nature of the Mott transition in the absence of any symmetry breaking remains a matter of debate. We study the correlation-driven insulator-to-metal transition in the prototypical 3D Mott system GaTa(4)Se(8), as a function of temperature and applied pressure. We report novel experiments on single crystals, which demonstrate that the transition is of first order and follows from the coexistence of two states, one insulating and one metallic, that we toggle with a small bias current. We provide support for our findings by contrasting the experimental data with calculations that combine local density approximation with dynamical mean-field theory, which are in very good agreement.

6.
Nat Commun ; 4: 1722, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23591889

RESUMEN

Mott transitions induced by strong electric fields are receiving growing interest. Recent theoretical proposals have focused on the Zener dielectric breakdown in Mott insulators. However, experimental studies are still too scarce to conclude about the mechanism. Here we report a study of the dielectric breakdown in the narrow-gap Mott insulators GaTa4Se(8-x)Te(x). We find that the I-V characteristics and the magnitude of the threshold electric field (Eth) do not correspond to a Zener breakdown, but rather to an avalanche breakdown. Eth increases as a power law of the Mott-Hubbard gap (Eg), in surprising agreement with the universal law Eth is proportional to Eg(2.5) reported for avalanche breakdown in semiconductors. However, the delay time for the avalanche that we observe in Mott insulators is over three orders of magnitude greater than in conventional semiconductors. Our results suggest that the electric field induces local insulator-to-metal Mott transitions that create conductive domains that grow to form filamentary paths across the sample.

7.
Phys Rev Lett ; 110(3): 037401, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23373949

RESUMEN

The optical properties of a GaTa(4)Se(8) single crystal are investigated under high pressure. At ambient pressure, the optical conductivity exhibits a charge gap of ≈0.12 eV and a broad midinfrared band at ≈0.55 eV. As pressure is increased, the low energy spectral weight is strongly enhanced and the optical gap is rapidly filled, pointing to an insulator to metal transition around 6 GPa. The overall evolution of the optical conductivity demonstrates that GaTa(4)Se(8) is a Mott insulator which undergoes a bandwidth-controlled Mott metal-insulator transition under pressure, in remarkably good agreement with theory. With the use of our optical data and ab initio band structure calculations, our results were successfully compared to the (U/D, T/D) phase diagram predicted by dynamical mean field theory for strongly correlated systems.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...