Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(26): 266506, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38996314

RESUMEN

We undertook a comprehensive investigation of the electronic structure of FeSe, known as a Hund metal, and found that it is not uniquely defined. Through accounting for all two-particle irreducible diagrams constructed from electron Green's function G and screened Coulomb interaction W in a self-consistent manner, a Mott-insulator phase of 2D-FeSe is unveiled. The metal-insulator transition is driven by the strong on-site Coulomb interaction in its paramagnetic phase, accompanied by the weakening of both local and nonlocal screening effects on the Fe-3d orbitals. Our results suggest that Mott physics may play a pivotal role in shaping the electronic, optical, and superconducting properties of monolayer or nanostructured FeSe.

2.
Nano Lett ; 24(15): 4376-4382, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38591335

RESUMEN

Embedding rare-earth monopnictide nanoparticles into III-V semiconductors enables unique optical, electrical, and thermal properties for THz photoconductive switches, tunnel junctions, and thermoelectric devices. Despite the high structural quality and control over growth, particle size (<3 nm), and density, the underlying electronic structure of these nanocomposite materials has only been hypothesized. Structural and electronic properties of ErAs nanoparticles with different shapes and sizes (cubic to spherical, 1.14, 1.71, and 2.28 nm) in AlAs, GaAs, InAs, and their alloys are investigated using first-principles calculations, revealing that spherical nanoparticles have lower formation energies. For the lowest-energy nanoparticles, the Fermi level is pinned near midgap in GaAs and AlAs but resonant in the conduction band in InAs. The Fermi level is shifted down as the particle size increases and is pinned on an absolute energy scale considering the band alignment at AlAs/GaAs/InAs interfaces, offering insights into the rational design of these nanomaterials.

3.
J Phys Condens Matter ; 36(8)2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-37931312

RESUMEN

A major shortcoming of ultrawide-bandgap (UWBG) semiconductors is unipolar doping, in which eithern-type orp-type conductivity is typically possible, but not both within the same material. For UWBG oxides, the issue is usually thep-type conductivity, which is inhibited by a strong tendency to form self-trapped holes (small polarons) in the material. Recently, rutile germanium oxide (r-GeO2), with a band gap near 4.7 eV, was identified as a material that might break this paradigm. However, the predicted acceptor ionization energies are still relatively high (∼0.4 eV), limitingp-type conductivity. To assess whether r-GeO2is an outlier due to its crystal structure, the properties of a set of rutile oxides are calculated and compared. Hybrid density functional calculations indicate that rutile TiO2and SnO2strongly trap holes at acceptor impurities, consistent with previous work. Self-trapped holes are found to be unstable in r-SiO2, a metastable polymorph that has a band gap near 8.5 eV. Group-III acceptor ionization energies are also found to be lowest among the rutile oxides and approach those of GaN. Acceptor impurities have sufficiently low formation energies to not be compensated by donors such as oxygen vacancies, at least under O-rich limit conditions. Based on the results, it appears that r-SiO2has the potential to exhibit the most efficientp-type conductivity when compared to other UWBG oxides.

4.
ACS Nano ; 17(21): 20991-20998, 2023 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-37870504

RESUMEN

Thin films of rare-earth monopnictide (RE-V) semimetals are expected to turn into semiconductors due to quantum confinement effects (QCE), lifting the overlap between electron pockets at Brillouin zone edges (X) and hole pockets at the zone center (Γ). Instead, using LaSb as an example, we find the emergence of the quantum spin Hall (QSH) insulator phase in (001)-oriented films as the thickness is reduced to 7, 5, or 3 monolayers (MLs). This is attributed to a strong QCE on the in-plane electron pockets and the lack of quantum confinement on the out-of-plane pocket projected onto the zone center, resulting in a band inversion. Spin-orbit coupling (SOC) opens a sizable nontrivial gap in the band structure of ultrathin films. Such effect is anticipated to be general in rare-earth monopnictides and may lead to interesting phenomena when coupled with the 4f magnetic moments present in other members of this family of materials.

5.
ACS Nano ; 17(17): 16912-16922, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37638732

RESUMEN

The alkaline earth stannates are touted for their wide band gaps and the highest room-temperature electron mobilities among all of the perovskite oxides. CaSnO3 has the highest measured band gap in this family and is thus a particularly promising ultrawide band gap semiconductor. However, discouraging results from previous theoretical studies and failed doping attempts had described this material as "undopable". Here we redeem CaSnO3 using hybrid molecular beam epitaxy, which provides an adsorption-controlled growth for the phase-pure, epitaxial, and stoichiometric CaSnO3 films. By introducing lanthanum (La) as an n-type dopant, we demonstrate the robust and predictable doping of CaSnO3 with free electron concentrations, n3D, from 3.3 × 1019 cm-3 to 1.6 × 1020 cm-3. The films exhibit a maximum room-temperature mobility of 42 cm2 V-1 s-1 at n3D = 3.3 × 1019 cm-3. Despite having a comparable radius as the host ion, La expands the lattice parameter. Using density functional calculations, this effect is attributed to the energy gain by lowering the conduction band upon volume expansion. Finally, we exploit robust doping by fabricating CaSnO3-based field-effect transistors. The transistors show promise for CaSnO3's high-voltage capabilities by exhibiting low off-state leakage below 2 × 10-5 mA/mm at a drain-source voltage of 100 V and on-off ratios exceeding 106. This work serves as a starting point for future studies on the semiconducting properties of CaSnO3 and many devices that could benefit from CaSnO3's exceptionally wide band gap.

6.
Nat Nanotechnol ; 18(9): 1005-1011, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37217765

RESUMEN

The oxides of platinum group metals are promising for future electronics and spintronics due to the delicate interplay of spin-orbit coupling and electron correlation energies. However, their synthesis as thin films remains challenging due to their low vapour pressures and low oxidation potentials. Here we show how epitaxial strain can be used as a control knob to enhance metal oxidation. Using Ir as an example, we demonstrate the use of epitaxial strain in engineering its oxidation chemistry, enabling phase-pure Ir or IrO2 films despite using identical growth conditions. The observations are explained using a density-functional-theory-based modified formation enthalpy framework, which highlights the important role of metal-substrate epitaxial strain in governing the oxide formation enthalpy. We also validate the generality of this principle by demonstrating epitaxial strain effect on Ru oxidation. The IrO2 films studied in our work further revealed quantum oscillations, attesting to the excellent film quality. The epitaxial strain approach we present could enable growth of oxide films of hard-to-oxidize elements using strain engineering.

7.
J Phys Chem Lett ; 14(1): 273-278, 2023 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-36595563

RESUMEN

Low p-type doping is a limiting factor to increase CdTe thin-film solar-cell efficiency toward the theoretical Shockley-Queisser limit of 33%. Previous calculations predict relatively high ionization energies for group-V acceptors (P, As, and Sb), and they are plagued by self-compensation, forming AX centers, severely limiting hole concentration. However, recent experiments on CdTe single crystals indicate a much more favorable scenario, where P, As, and Sb behave as shallow acceptors. Using hybrid functional calculations, we solve this puzzle by showing that the ionization energies significantly decrease with the supercell size. When including the effects of spin-orbit coupling and extrapolating the results to the dilute limit, we find these impurities behave as hydrogenic-like shallow acceptors, and AX centers are unstable and do not limit p-type doping. We address the differences between our results and previous theoretical predictions and show that our ionization energies predict hole concentrations that agree with recent temperature-dependent Hall measurements.

8.
J Phys Chem Lett ; 13(51): 12026-12031, 2022 Dec 29.
Artículo en Inglés | MEDLINE | ID: mdl-36541824

RESUMEN

In its lowest-energy three-dimensional (3D) hexagonal crystal structure (γ phase), In2Se3 has a direct band gap of ∼1.8 eV and displays high absorption coefficient, making it a promising semiconductor material for optoelectronics. Incorporation of Te allows for tuning the band gap, adding flexibility to device design and extending the application range. Here we report results of hybrid density functional theory calculations to assess the electronic and optical properties of γ-In2Se3, γ-In2Te3, and γ-In2(Se1-xTex)3 alloys, and initial experiments on the growth and characterization of γ-In2Se3 thin films. The predicted band gap of 1.84 eV for γ-In2Se3 is in good agreement with the absorption onset derived from transmission and reflection spectra of thin films. We show that incorporation of Te gives γ-In2(Se1-xTex)3 alloys with a band gap ranging from 1.84 eV down to 1.23 eV, thus covering the optimal band gap range for single-junction solar cells. In addition, the γ-In2Se3/γ-In2(Se1-xTex)3 bilayer could be employed in tandem solar-cell architectures absorbing at Eg ≈ 1.8 eV and at Eg ≤ 1.4 eV, toward overcoming the ∼33% efficiency set by the Shockley-Queisser limit for single junction solar cells. We also discuss band gap bowing and mixing enthalpies, aiming at adding γ-In2Se3, γ-In2Te3, and γ-In2(Se1-xTex)3 alloys to the available toolbox of materials for solar cells and other optoelectronic applications.

9.
ACS Appl Mater Interfaces ; 14(37): 42683-42691, 2022 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-36074957

RESUMEN

Terahertz (THz) technologies have been of interest for many years due to the variety of applications including gas sensing, nonionizing imaging of biological systems, security and defense, and so forth. To date, scientists have used different classes of materials to perform different THz functions. However, to assemble an on-chip THz integrated system, we must understand how to integrate these different materials. Here, we explore the growth of Bi2Se3, a topological insulator material that could serve as a plasmonic waveguide in THz integrated devices, on technologically important GaAs(001) substrates. We explore surface treatments and find that an atomically smooth GaAs surface is critical to achieving high-quality Bi2Se3 films despite the relatively weak film/substrate interaction. Calculations indicate that the Bi2Se3/GaAs interface is likely selenium-terminated and shows no evidence of chemical bonding between the Bi2Se3 and the substrate. These results are a guide for integrating van der Waals materials with conventional semiconductor substrates and serve as the first steps toward achieving an on-chip THz integrated system.

10.
Adv Mater ; 34(26): e2108261, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35435286

RESUMEN

The primary mechanism of optical memoristive devices relies on phase transitions between amorphous and crystalline states. The slow or energy-hungry amorphous-crystalline transitions in optical phase-change materials are detrimental to the scalability and performance of devices. Leveraging an integrated photonic platform, nonvolatile and reversible switching between two layered structures of indium selenide (In2 Se3 ) triggered by a single nanosecond pulse is demonstrated. The high-resolution pair distribution function reveals the detailed atomistic transition pathways between the layered structures. With interlayer "shear glide" and isosymmetric phase transition, switching between the α- and ß-structural states contains low re-configurational entropy, allowing reversible switching between layered structures. Broadband refractive index contrast, optical transparency, and volumetric effect in the crystalline-crystalline phase transition are experimentally characterized in molecular-beam-epitaxy-grown thin films and compared to ab initio calculations. The nonlinear resonator transmission spectra measure of incremental linear loss rate of 3.3 GHz, introduced by a 1.5 µm-long In2 Se3 -covered layer, resulted from the combinations of material absorption and scattering.

11.
Sci Adv ; 7(16)2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33853778

RESUMEN

Controlling electronic properties via band structure engineering is at the heart of modern semiconductor devices. Here, we extend this concept to semimetals where, using LuSb as a model system, we show that quantum confinement lifts carrier compensation and differentially affects the mobility of the electron and hole-like carriers resulting in a strong modification in its large, nonsaturating magnetoresistance behavior. Bonding mismatch at the heteroepitaxial interface of a semimetal (LuSb) and a semiconductor (GaSb) leads to the emergence of a two-dimensional, interfacial hole gas. This is accompanied by a charge transfer across the interface that provides another avenue to modify the electronic structure and magnetotransport properties in the ultrathin limit. Our work lays out a general strategy of using confined thin-film geometries and heteroepitaxial interfaces to engineer electronic structure in semimetallic systems, which allows control over their magnetoresistance behavior and simultaneously provides insights into its origin.

12.
Langmuir ; 36(48): 14539-14545, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-33238708

RESUMEN

Recent advances in organic surface sensitization of metal oxide nanomaterials focused on two-step approaches with the first step providing a convenient functionalized chemical "hook", such as an alkyne functionality connected to a carboxylic group in prop-2-ynoic acid. The second step then took advantage of copper-catalyzed click chemistry to deliver the desired structure (such as benzyl or perylene) attached to an azide to react with the surface-bound alkyne. The use of this approach on CuO not only resulted in a successful morphology preserving chemical modification but also has demonstrated that surface Cu(I) can be obtained during the process and promote a surface-catalyzed click reaction without additional copper catalyst. Here, it is demonstrated that this surface-catalyzed chemistry can be performed on a surface of the CuO nanomaterial without a solvent, as a "dry click" reaction, as confirmed with spectroscopic and microscopic investigations with X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, X-ray diffraction, solid-state nuclear magnetic resonance, and scanning electron microscopy. Computational studies provided instructive information on the interaction between the surface prop-2-yonate and azide functional group to better understand the mechanism of this surface-catalyzed click reaction.

13.
Phys Rev Lett ; 125(12): 126404, 2020 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-33016740

RESUMEN

It has been recently revealed that strontium titanate (SrTiO_{3}) displays persistent photoconductivity with unique characteristics: it occurs at room temperature and lasts over a very long period of time. Illumination of SrTiO_{3} crystals at room temperature with sub-band-gap light reduces the electrical resistance by three orders of magnitude and persists for weeks or longer [Tarun et al., Phys. Rev. Lett. 111, 187403 (2013)PRLTAO0031-900710.1103/PhysRevLett.111.187403]. Experiments indicate that oxygen vacancy and hydrogen play important roles, yet the microscopic mechanism responsible for this remarkable effect has remained unidentified. Using hybrid density functional theory calculations we show that an instability associated with substitutional hydrogen H_{O}^{+} under illumination, which becomes doubly ionized and leaves the oxygen site, can explain the experimental observations. H_{O} then turns into an interstitial hydrogen and an oxygen vacancy, leading to excess carriers in the conduction band. This phenomenon is not exclusive to SrTiO_{3}, but it is also predicted to occur in other oxides. Interestingly, this phenomenon represents an elegant way of proving the existence of hydrogen substituting on an oxygen site (H_{O}), forming an interesting, and rarely observed, type of three-center, two-electron bond.

14.
ACS Omega ; 5(14): 8090-8096, 2020 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-32309718

RESUMEN

We developed an experimental metrology for measuring local strain in molecular beam epitaxially (MBE) grown crystalline chalcogenide thin films through micro-Raman spectroscopy. For In2Se3 and Bi2Se3 on c-plane sapphire substrates, the transverse-optical vibrational mode (A1 phonon) is most sensitive to strain. We first calibrated the phonon frequency-strain relationship in each material by introducing strain in flexible substrates. The Raman shift-strain coefficient is -1.97 cm-1/% for the In2Se3 A1(LO + TO) mode and -1.68 cm-1/% for the Bi2Se3 A1g 2 mode. In2Se3 and Bi2Se3 samples exhibit compressive strain and tensile strain, respectively. The observations are compliant with predictions from the opposite relative thermal expansion coefficient between the sample and the substrate. We also map strain cartography near the edge of as-grown MBE samples. In In2Se3, the strain accumulates with increasing film thickness, while a low strain is observed in thicker Bi2Se3 films.

15.
Phys Rev Lett ; 123(12): 127201, 2019 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-31633976

RESUMEN

EuTiO_{3} is an antiferromagnetic (AFM) material showing strong spin-lattice interactions, large magnetoelectric response, and quantum paraelectric behavior at low temperatures. Using electronic-structure calculations, we show that adding electrons to the conduction band leads to ferromagnetism. The transition from antiferromagnetism to ferromagnetism is predicted to occur at ∼0.08 electrons/Eu (∼1.4×10^{21} cm^{-3}). This effect is also predicted to occur in heterostructures such as LaAlO_{3}/EuTiO_{3}, where ferromagnetism is triggered by the formation of a high-density two-dimensional electron gas in the EuTiO_{3}. Our analysis indicates that the coupling between Ti 3d and Eu 5d plays a crucial role in lowering the Ti 3d conduction band in the ferromagnetic (FM) phase, leading to an almost linear dependence of the energy difference between the FM and AFM ordering on the carrier concentration. These findings open up possibilities in designing field-effect transistors using EuTiO_{3}-based heterointerfaces to probe fundamental interactions between highly localized spins and itinerant, polarized charge carriers.

16.
J Phys Chem A ; 122(49): 9474-9482, 2018 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-30418025

RESUMEN

In this study, a three-dimensional surface enhanced Raman scattering (SERS) substrate comprised of silver coated gold nanorods (Ag/AuNRs) decorated on electrospun polycaprolactone (PCL) fibers has been applied,  for the first time, to quantitative analytical measurements on various arsenic species: p-arsanilic acid ( pAsA), roxarsone (Rox), and arsenate (AsV), with a demonstrated sensitivity below 5 ppb. AsV detection in a solution of common salt ions has been demonstrated, showing the tolerance of the substrate to more complex environments. pAsA adsorption behavior on the substrate surface has been investigated in detail using these unique SERS substrates. Calculations based on density functional theory (DFT) support the spectral observation for pAsA. This substrate also has been shown to serve as a platform for in situ studies of arsenic desorption and reduction. This SERS substrate is potentially an excellent environmental sensor for both fundamental studies and practical applications.

17.
Sci Adv ; 4(6): eaar5832, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29868642

RESUMEN

Heusler compounds are a ripe platform for discovery and manipulation of emergent properties in topological and magnetic heterostructures. In these applications, the surfaces and interfaces are critical to performance; however, little is known about the atomic-scale structure of Heusler surfaces and interfaces or why they reconstruct. Using a combination of molecular beam epitaxy, core-level and angle-resolved photoemission, scanning tunneling microscopy, and density functional theory, we map the phase diagram and determine the atomic and electronic structures for several surface reconstructions of CoTiSb (001), a prototypical semiconducting half-Heusler. At low Sb coverage, the surface is characterized by Sb-Sb dimers and Ti vacancies, while, at high Sb coverage, an adlayer of Sb forms. The driving forces for reconstruction are charge neutrality and minimizing the number of Sb dangling bonds, which form metallic surface states within the bulk bandgap. We develop a simple electron counting model that explains the atomic and electronic structure, as benchmarked against experiments and first-principles calculations. We then apply the model to explain previous experimental observations at other half-Heusler surfaces, including the topological semimetal PtLuSb and the half-metallic ferromagnet NiMnSb. The model provides a simple framework for understanding and predicting the surface structure and properties of these novel quantum materials.

18.
ACS Appl Mater Interfaces ; 10(6): 5140-5146, 2018 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-29369616

RESUMEN

Layered atomic-layer-deposited and forming-gas-annealed TiO2/Al2O3 dielectric stacks, with the Al2O3 layer interposed between the TiO2 and a p-type germanium substrate, are found to exhibit a significant interface charge dipole that causes a ∼-0.2 V shift of the flat-band voltage and suppresses the leakage current density for gate injection of electrons. These effects can be eliminated by the formation of a trilayer dielectric stack, consistent with the cancellation of one TiO2/Al2O3 interface dipole by the addition of another dipole of opposite sign. Density functional theory calculations indicate that the observed interface-dependent properties of TiO2/Al2O3 dielectric stacks are consistent in sign and magnitude with the predicted behavior of AlTi and TiAl point-defect dipoles produced by local intermixing of the Al2O3/TiO2 layers across the interface. Evidence for such intermixing is found in both electrical and physical characterization of the gate stacks.

19.
J Chem Phys ; 146(21): 214504, 2017 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-28595405

RESUMEN

High levels of doping in WO3 have been experimentally observed to lead to structural transformation towards higher symmetry phases. We explore the structural phase diagram with charge doping through first-principles methods based on hybrid density functional theory, as a function of doping the room-temperature monoclinic phase transitions to the orthorhombic, tetragonal, and finally cubic phase. Based on a decomposition of energies into electronic and strain contributions, we attribute the transformation to a gain in energy resulting from a lowering of the conduction band on an absolute energy scale.

20.
ChemSusChem ; 9(9): 1027-31, 2016 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-27072042

RESUMEN

Band-gap engineering of oxide materials is of great interest for optoelectronics, photovoltaics, and photocatalysis applications. In this study, electronic structures of perovskite oxynitrides, LaTiO2 N and SrNbO2 N, and solid solutions, (SrTiO3 )1-x (LaTiO2 N)x and (SrTiO3 )1-x (SrNbO2 N)x , are investigated using hybrid density functional calculations. Band gaps of LaTiO2 N and SrNbO2 N are much smaller than that of SrTiO3 owing to the formation of a N 2p band, which is higher in energy than the O 2p band. The valence- and conduction-band offsets of SrTiO3 /LaTiO2 N and SrTiO3 /SrNbO2 N are computed, and the adequacy for H2 evolution is analyzed by comparing the positions of the band edges with respect to the standard hydrogen electrode (SHE). The band gap of (SrTiO3 )1-x (LaTiO2 N)x and (SrTiO3 )1-x (SrNbO2 N)x solid solutions are also discussed.


Asunto(s)
Compuestos de Calcio/química , Óxidos/química , Titanio/química , Compuestos de Calcio/efectos de la radiación , Catálisis , Lantano/química , Lantano/efectos de la radiación , Luz , Óxidos/efectos de la radiación , Procesos Fotoquímicos , Soluciones , Estroncio/química , Estroncio/efectos de la radiación , Titanio/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA