Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Gastroenterol Hepatol ; 13(2): 583-597, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34626841

RESUMEN

BACKGROUND & AIMS: Recently, novel inborn errors of metabolism were identified because of mutations in V-ATPase assembly factors TMEM199 and CCDC115. Patients are characterized by generalized protein glycosylation defects, hypercholesterolemia, and fatty liver disease. Here, we set out to characterize the lipid and fatty liver phenotype in human plasma, cell models, and a mouse model. METHODS AND RESULTS: Patients with TMEM199 and CCDC115 mutations displayed hyperlipidemia, characterized by increased levels of lipoproteins in the very low density lipoprotein range. HepG2 hepatoma cells, in which the expression of TMEM199 and CCDC115 was silenced, and induced pluripotent stem cell (iPSC)-derived hepatocyte-like cells from patients with TMEM199 mutations showed markedly increased secretion of apolipoprotein B (apoB) compared with controls. A mouse model for TMEM199 deficiency with a CRISPR/Cas9-mediated knock-in of the human A7E mutation had marked hepatic steatosis on chow diet. Plasma N-glycans were hypogalactosylated, consistent with the patient phenotype, but no clear plasma lipid abnormalities were observed in the mouse model. In the siTMEM199 and siCCDC115 HepG2 hepatocyte models, increased numbers and size of lipid droplets were observed, including abnormally large lipid droplets, which colocalized with lysosomes. Excessive de novo lipogenesis, failing oxidative capacity, and elevated lipid uptake were not observed. Further investigation of lysosomal function revealed impaired acidification combined with impaired autophagic capacity. CONCLUSIONS: Our data suggest that the hypercholesterolemia in TMEM199 and CCDC115 deficiency is due to increased secretion of apoB-containing particles. This may in turn be secondary to the hepatic steatosis observed in these patients as well as in the mouse model. Mechanistically, we observed impaired lysosomal function characterized by reduced acidification, autophagy, and increased lysosomal lipid accumulation. These findings could explain the hepatic steatosis seen in patients and highlight the importance of lipophagy in fatty liver disease. Because this pathway remains understudied and its regulation is largely untargeted, further exploration of this pathway may offer novel strategies for therapeutic interventions to reduce lipotoxicity in fatty liver disease.


Asunto(s)
Hígado Graso , Gotas Lipídicas , Animales , Hígado Graso/genética , Hígado Graso/metabolismo , Hepatocitos/metabolismo , Humanos , Gotas Lipídicas/metabolismo , Lisosomas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/genética
2.
J Inherit Metab Dis ; 43(6): 1310-1320, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32557671

RESUMEN

Congenital disorders of glycosylation (CDG) are a rapidly expanding group of rare genetic defects in glycosylation. In a novel CDG subgroup of vacuolar-ATPase (V-ATPase) assembly defects, various degrees of hepatic injury have been described, including end-stage liver disease. However, the CDG diagnostic workflow can be complex as liver disease per se may be associated with abnormal glycosylation. Therefore, we collected serum samples of patients with a wide range of liver pathology to study the performance and yield of two CDG screening methods. Our aim was to identify glycosylation patterns that could help to differentiate between primary and secondary glycosylation defects in liver disease. To this end, we analyzed serum samples of 1042 adult liver disease patients. This cohort consisted of 567 liver transplant candidates and 475 chronic liver disease patients. Our workflow consisted of screening for abnormal glycosylation by transferrin isoelectric focusing (tIEF), followed by in-depth analysis of the abnormal samples with quadruple time-of-flight mass spectrometry (QTOF-MS). Screening with tIEF resulted in identification of 247 (26%) abnormal samples. QTOF-MS analysis of 110 of those did not reveal glycosylation abnormalities comparable with those seen in V-ATPase assembly factor defects. However, two patients presented with isolated sialylation deficiency. Fucosylation was significantly increased in liver transplant candidates compared to healthy controls and patients with chronic liver disease. In conclusion, a significant percentage of patients with liver disease presented with abnormal CDG screening results. However, the glycosylation pattern was not indicative for a V-ATPase assembly factor defect. Advanced glycoanalytical techniques assist in the dissection of secondary and primary glycosylation defects.


Asunto(s)
Trastornos Congénitos de Glicosilación/metabolismo , Enfermedad Hepática en Estado Terminal/metabolismo , Espectrometría de Masas/métodos , Transferrina/análisis , Adulto , Anciano , Estudios de Casos y Controles , Estudios de Cohortes , Trastornos Congénitos de Glicosilación/diagnóstico , Femenino , Glicosilación , Humanos , Hígado/metabolismo , Masculino , Persona de Mediana Edad , Transferrina/metabolismo
3.
Hepatology ; 72(6): 1968-1986, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32145091

RESUMEN

BACKGROUND AND AIMS: Vacuolar H+-ATP complex (V-ATPase) is a multisubunit protein complex required for acidification of intracellular compartments. At least five different factors are known to be essential for its assembly in the endoplasmic reticulum (ER). Genetic defects in four of these V-ATPase assembly factors show overlapping clinical features, including steatotic liver disease and mild hypercholesterolemia. An exception is the assembly factor vacuolar ATPase assembly integral membrane protein (VMA21), whose X-linked mutations lead to autophagic myopathy. APPROACH AND RESULTS: Here, we report pathogenic variants in VMA21 in male patients with abnormal protein glycosylation that result in mild cholestasis, chronic elevation of aminotransferases, elevation of (low-density lipoprotein) cholesterol and steatosis in hepatocytes. We also show that the VMA21 variants lead to V-ATPase misassembly and dysfunction. As a consequence, lysosomal acidification and degradation of phagocytosed materials are impaired, causing lipid droplet (LD) accumulation in autolysosomes. Moreover, VMA21 deficiency triggers ER stress and sequestration of unesterified cholesterol in lysosomes, thereby activating the sterol response element-binding protein-mediated cholesterol synthesis pathways. CONCLUSIONS: Together, our data suggest that impaired lipophagy, ER stress, and increased cholesterol synthesis lead to LD accumulation and hepatic steatosis. V-ATPase assembly defects are thus a form of hereditary liver disease with implications for the pathogenesis of nonalcoholic fatty liver disease.


Asunto(s)
Autofagia/genética , Trastornos Congénitos de Glicosilación/genética , Hepatopatías/genética , ATPasas de Translocación de Protón Vacuolares/genética , Adulto , Biopsia , Células Cultivadas , Trastornos Congénitos de Glicosilación/sangre , Trastornos Congénitos de Glicosilación/diagnóstico , Trastornos Congénitos de Glicosilación/patología , Análisis Mutacional de ADN , Fibroblastos , Humanos , Hígado/citología , Hígado/patología , Hepatopatías/sangre , Hepatopatías/diagnóstico , Hepatopatías/patología , Masculino , Mutación Missense , Linaje , Cultivo Primario de Células
5.
Am J Hum Genet ; 98(2): 322-30, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833330

RESUMEN

Congenital disorders of glycosylation (CDGs) form a genetically and clinically heterogeneous group of diseases with aberrant protein glycosylation as a hallmark. A subgroup of CDGs can be attributed to disturbed Golgi homeostasis. However, identification of pathogenic variants is seriously complicated by the large number of proteins involved. As part of a strategy to identify human homologs of yeast proteins that are known to be involved in Golgi homeostasis, we identified uncharacterized transmembrane protein 199 (TMEM199, previously called C17orf32) as a human homolog of yeast V-ATPase assembly factor Vph2p (also known as Vma12p). Subsequently, we analyzed raw exome-sequencing data from families affected by genetically unsolved CDGs and identified four individuals with different mutations in TMEM199. The adolescent individuals presented with a mild phenotype of hepatic steatosis, elevated aminotransferases and alkaline phosphatase, and hypercholesterolemia, as well as low serum ceruloplasmin. Affected individuals showed abnormal N- and mucin-type O-glycosylation, and mass spectrometry indicated reduced incorporation of galactose and sialic acid, as seen in other Golgi homeostasis defects. Metabolic labeling of sialic acids in fibroblasts confirmed deficient Golgi glycosylation, which was restored by lentiviral transduction with wild-type TMEM199. V5-tagged TMEM199 localized with ERGIC and COPI markers in HeLa cells, and electron microscopy of a liver biopsy showed dilated organelles suggestive of the endoplasmic reticulum and Golgi apparatus. In conclusion, we have identified TMEM199 as a protein involved in Golgi homeostasis and show that TMEM199 deficiency results in a hepatic phenotype with abnormal glycosylation.


Asunto(s)
Fosfatasa Alcalina/metabolismo , Colesterol/metabolismo , Aparato de Golgi/genética , Homeostasis , Proteínas de la Membrana/deficiencia , Transaminasas/metabolismo , Adulto , Secuencia de Aminoácidos , Ceruloplasmina/metabolismo , Retículo Endoplásmico/metabolismo , Exoma , Fibroblastos/metabolismo , Genotipo , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Masculino , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Fenotipo , Adulto Joven
6.
Am J Hum Genet ; 98(2): 310-21, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-26833332

RESUMEN

Disorders of Golgi homeostasis form an emerging group of genetic defects. The highly heterogeneous clinical spectrum is not explained by our current understanding of the underlying cell-biological processes in the Golgi. Therefore, uncovering genetic defects and annotating gene function are challenging. Exome sequencing in a family with three siblings affected by abnormal Golgi glycosylation revealed a homozygous missense mutation, c.92T>C (p.Leu31Ser), in coiled-coil domain containing 115 (CCDC115), the function of which is unknown. The same mutation was identified in three unrelated families, and in one family it was compound heterozygous in combination with a heterozygous deletion of CCDC115. An additional homozygous missense mutation, c.31G>T (p.Asp11Tyr), was found in a family with two affected siblings. All individuals displayed a storage-disease-like phenotype involving hepatosplenomegaly, which regressed with age, highly elevated bone-derived alkaline phosphatase, elevated aminotransferases, and elevated cholesterol, in combination with abnormal copper metabolism and neurological symptoms. Two individuals died of liver failure, and one individual was successfully treated by liver transplantation. Abnormal N- and mucin type O-glycosylation was found on serum proteins, and reduced metabolic labeling of sialic acids was found in fibroblasts, which was restored after complementation with wild-type CCDC115. PSI-BLAST homology detection revealed reciprocal homology with Vma22p, the yeast V-ATPase assembly factor located in the endoplasmic reticulum (ER). Human CCDC115 mainly localized to the ERGIC and to COPI vesicles, but not to the ER. These data, in combination with the phenotypic spectrum, which is distinct from that associated with defects in V-ATPase core subunits, suggest a more general role for CCDC115 in Golgi trafficking. Our study reveals CCDC115 deficiency as a disorder of Golgi homeostasis that can be readily identified via screening for abnormal glycosylation in plasma.


Asunto(s)
Aparato de Golgi/genética , Homeostasis , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Secuencia de Aminoácidos , Niño , Preescolar , Clonación Molecular , Retículo Endoplásmico/metabolismo , Exoma , Femenino , Fibroblastos/citología , Glicosilación , Aparato de Golgi/metabolismo , Células HeLa , Heterocigoto , Humanos , Lactante , Masculino , Datos de Secuencia Molecular , Linaje , Fenotipo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
7.
Ned Tijdschr Geneeskd ; 157(35): A6374, 2013.
Artículo en Holandés | MEDLINE | ID: mdl-23985243

RESUMEN

BACKGROUND: Boerhaave's syndrome is a spontaneous oesophageal rupture caused by excessive vomiting. Left untreated the mortality rate is high. Surgical intervention was always the treatment of first choice, but increasingly a minimally invasive approach involving the endoscopic placement of an oesophageal stent is being carried out. CASE STUDY: A 55-year-old man with no previous history presented at the Emergency Department complaining of pain in the upper abdomen that had come on suddenly after excessive vomiting. On CT scan Boerhaave's syndrome was diagnosed. An oesophageal stent was placed. The postoperative course was complicated by mediastinal and pleural abscesses for which surgical debridement was required. After 2 months the patient was discharged to a rehabilitation centre. CONCLUSION: Surgical intervention is indicated if a patient with Boerhaave's syndrome is haemodynamically unstable or has sepsis, and the diagnosis is made within 24 hours. In all other cases a minimally invasive approach involving antibiotics, pleural drainage and endoscopic stent placement should be considered.


Asunto(s)
Enfermedades del Esófago/cirugía , Stents , Vómitos/complicaciones , Enfermedad Aguda , Enfermedades del Esófago/diagnóstico , Humanos , Masculino , Persona de Mediana Edad , Procedimientos Quirúrgicos Mínimamente Invasivos , Complicaciones Posoperatorias , Rotura Espontánea/diagnóstico , Rotura Espontánea/cirugía , Síndrome , Resultado del Tratamiento
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...