Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Vis Exp ; (107): e53481, 2016 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-26862837

RESUMEN

Lateral root development contributes significantly to the root system, and hence is crucial for plant growth. The study of lateral root initiation is however tedious, because it occurs only in a few cells inside the root and in an unpredictable manner. To circumvent this problem, a Lateral Root Inducible System (LRIS) has been developed. By treating seedlings consecutively with an auxin transport inhibitor and a synthetic auxin, highly controlled lateral root initiation occurs synchronously in the primary root, allowing abundant sampling of a desired developmental stage. The LRIS has first been developed for Arabidopsis thaliana, but can be applied to other plants as well. Accordingly, it has been adapted for use in maize (Zea mays). A detailed overview of the different steps of the LRIS in both plants is given. The combination of this system with comparative transcriptomics made it possible to identify functional homologs of Arabidopsis lateral root initiation genes in other species as illustrated here for the CYCLIN B1;1 (CYCB1;1) cell cycle gene in maize. Finally, the principles that need to be taken into account when an LRIS is developed for other plant species are discussed.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Plantones/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Transporte Biológico , Ácidos Indolacéticos/farmacología , Desarrollo de la Planta
2.
Plant Biotechnol J ; 11(9): 1092-102, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23941360

RESUMEN

The root system is fundamental for plant development, is crucial for overall plant growth and is recently being recognized as the key for future crop productivity improvement. A major determinant of root system architecture is the initiation of lateral roots. While knowledge of the genetic and molecular mechanisms regulating lateral root initiation has mainly been achieved in the dicotyledonous plant Arabidopsis thaliana, only scarce data are available for major crop species, generally monocotyledonous plants. The existence of both similarities and differences at the morphological and anatomical level between plant species from both clades raises the question whether regulation of lateral root initiation may or may not be conserved through evolution. Here, we performed a targeted genome-wide transcriptome analysis during lateral root initiation both in primary and in adventitious roots of Zea mays and found evidence for the existence of common transcriptional regulation. Further, based on a comparative analysis with Arabidopsis transcriptome data, a core of genes putatively conserved across angiosperms could be identified. Therefore, it is plausible that common regulatory mechanisms for lateral root initiation are at play in maize and Arabidopsis, a finding that might encourage the extrapolation of knowledge obtained in Arabidopsis to crop species at the level of root system architecture.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/farmacología , Raíces de Plantas/genética , Zea mays/genética , Arabidopsis/citología , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Ciclo Celular , División Celular , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Raíces de Plantas/citología , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Zea mays/citología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
3.
Nat Chem Biol ; 8(9): 798-805, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22885787

RESUMEN

The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Proteínas de Plantas/fisiología , Raíces de Plantas/crecimiento & desarrollo , Ácidos Indolacéticos/metabolismo , ARN Mensajero/genética
4.
Philos Trans R Soc Lond B Biol Sci ; 367(1595): 1525-33, 2012 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-22527395

RESUMEN

In Arabidopsis thaliana, lateral-root-forming competence of pericycle cells is associated with their position at the xylem poles and depends on the establishment of protoxylem-localized auxin response maxima. In maize, our histological analyses revealed an interruption of the pericycle at the xylem poles, and confirmed the earlier reported proto-phloem-specific lateral root initiation. Phloem-pole pericycle cells were larger and had thinner cell walls compared with the other pericycle cells, highlighting the heterogeneous character of the maize root pericycle. A maize DR5::RFP marker line demonstrated the presence of auxin response maxima in differentiating xylem cells at the root tip and in cells surrounding the proto-phloem vessels. Chemical inhibition of auxin transport indicated that the establishment of the phloem-localized auxin response maxima is crucial for lateral root formation in maize, because in their absence, random divisions of pericycle and endodermis cells occurred, not resulting in organogenesis. These data hint at an evolutionarily conserved mechanism, in which the establishment of vascular auxin response maxima is required to trigger cells in the flanking outer tissue layer for lateral root initiation. It further indicates that lateral root initiation is not dependent on cellular specification or differentiation of the type of vascular tissue.


Asunto(s)
Ácidos Indolacéticos/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Transporte Biológico/efectos de los fármacos , Biomarcadores , Diferenciación Celular , División Celular , Tamaño de la Célula , Pared Celular/metabolismo , Meristema/efectos de los fármacos , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Meristema/ultraestructura , Microscopía Electrónica de Transmisión , Floema/efectos de los fármacos , Floema/crecimiento & desarrollo , Floema/metabolismo , Floema/ultraestructura , Ftalimidas/farmacología , Células Vegetales/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/ultraestructura , Xilema/efectos de los fármacos , Xilema/crecimiento & desarrollo , Xilema/metabolismo , Xilema/ultraestructura , Zea mays/citología , Zea mays/efectos de los fármacos , Zea mays/metabolismo
5.
Proc Natl Acad Sci U S A ; 109(5): 1554-9, 2012 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-22307611

RESUMEN

Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic compounds known as flavonols have been shown to act as endogenous regulators of auxin transport. However, only limited information is available on how flavonol synthesis is developmentally regulated. Using reduction-of-function and overexpression approaches in parallel, we demonstrate that the WRKY23 transcription factor is needed for proper root growth and development by stimulating the local biosynthesis of flavonols. The expression of WRKY23 itself is controlled by auxin through the Auxin Response Factor 7 (ARF7) and ARF19 transcriptional response pathway. Our results suggest a model in which WRKY23 is part of a transcriptional feedback loop of auxin on its own transport through local regulation of flavonol biosynthesis.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/metabolismo , Flavonoles/biosíntesis , Raíces de Plantas/crecimiento & desarrollo , Factores de Transcripción/fisiología , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Ácidos Indolacéticos/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Factores de Transcripción/metabolismo
6.
Curr Biol ; 20(19): 1697-706, 2010 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-20888232

RESUMEN

BACKGROUND: Lateral roots are formed at regular intervals along the main root by recurrent specification of founder cells. To date, the mechanism by which branching of the root system is controlled and founder cells become specified remains unknown. RESULTS: Our study reports the identification of the auxin regulatory components and their target gene, GATA23, which control lateral root founder cell specification. Initially, a meta-analysis of lateral root-related transcriptomic data identified the GATA23 transcription factor. GATA23 is expressed specifically in xylem pole pericycle cells before the first asymmetric division and is correlated with oscillating auxin signaling maxima in the basal meristem. Also, functional studies revealed that GATA23 controls lateral root founder cell identity. Finally, we show that an Aux/IAA28-dependent auxin signaling mechanism in the basal meristem controls GATA23 expression. CONCLUSIONS: We have identified the first molecular components that control lateral root founder cell identity in the Arabidopsis root. These include an IAA28-dependent auxin signaling module in the basal meristem region that regulates GATA23 expression and thereby lateral root founder cell specification and root branching patterns.


Asunto(s)
Factores de Transcripción GATA/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Plantas , Transducción de Señal , Factores de Transcripción GATA/genética , Regulación de la Expresión Génica de las Plantas , Datos de Secuencia Molecular , Desarrollo de la Planta , Proteínas de Plantas/genética , Raíces de Plantas/citología , Plantas/anatomía & histología , Plantas/genética , Técnicas del Sistema de Dos Híbridos
7.
Chem Biol ; 16(6): 594-604, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19549598

RESUMEN

Glycogen synthase kinase 3 (GSK3) is a key regulator in signaling pathways in both animals and plants. Three Arabidopsis thaliana GSK3s are shown to be related to brassinosteroid (BR) signaling. In a phenotype-based compound screen we identified bikinin, a small molecule that activates BR signaling downstream of the BR receptor. Bikinin directly binds the GSK3 BIN2 and acts as an ATP competitor. Furthermore, bikinin inhibits the activity of six other Arabidopsis GSK3s. Genome-wide transcript analyses demonstrate that simultaneous inhibition of seven GSK3s is sufficient to activate BR responses. Our data suggest that GSK3 inhibition is the sole activation mode of BR signaling and argues against GSK3-independent BR responses in Arabidopsis. The opportunity to generate multiple and conditional knockouts in key regulators in the BR signaling pathway by bikinin represents a useful tool to further unravel regulatory mechanisms.


Asunto(s)
Aminopiridinas/farmacología , Arabidopsis/enzimología , Colestanoles/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Esteroides Heterocíclicos/farmacología , Succinatos/farmacología , Secuencia de Aminoácidos , Aminopiridinas/química , Proteínas de Arabidopsis/antagonistas & inhibidores , Proteínas de Arabidopsis/metabolismo , Brasinoesteroides , Colestanoles/química , Proteínas de Unión al ADN , Glucógeno Sintasa Quinasa 3/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Fosforilación , Isoformas de Proteínas/antagonistas & inhibidores , Isoformas de Proteínas/metabolismo , Proteínas Quinasas/metabolismo , Homología de Secuencia de Aminoácido , Transducción de Señal , Esteroides Heterocíclicos/química , Succinatos/química
8.
Appl Environ Microbiol ; 71(11): 6515-23, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16269676

RESUMEN

The enzyme lactoperoxidase is part of the innate immune system in vertebrates and owes its antimicrobial activity to the formation of oxidative reaction products from various substrates. In a previous study, we have reported that, with thiocyanate as a substrate, the lactoperoxidase system elicits a distinct stress response in Escherichia coli MG1655. This response is different from but partly overlapping with the stress responses to hydrogen peroxide and to superoxide. In the current work, we constructed knockouts in 10 lactoperoxidase system-inducible genes to investigate their role in the tolerance of E. coli MG1655 to this antimicrobial system. Five mutations resulted in a slightly increased sensitivity, but one mutation (corA) caused hypersensitivity to the lactoperoxidase system. This hypersensitive phenotype was specific to the lactoperoxidase system, since neither the sensitivity to hydrogen peroxide nor to the superoxide generator plumbagin was affected in the corA mutant. Salmonella enterica serovar Typhimurium corA had a similar phenotype. Although corA encodes an Mg2+ transporter and at least three other inducible open reading frames belonged to the Mg2+ regulon, repression of the Mg stimulon by Mg2+ did not change the lactoperoxidase sensitivity of either the wild-type or corA mutant. Prior exposure to 0.3 mM Ni2+, which is also transported by CorA, strongly sensitized MG1655 but not the corA mutant to the lactoperoxidase system. Furthermore, this Ni2+-dependent sensitization was suppressed by the CorA-specific inhibitor Co(III) hexaammine. These results indicate that CorA affects the lactoperoxidase sensitivity of E. coli by modulating the cytoplasmic concentrations of transition metals that enhance the toxicity of the lactoperoxidase system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Catión/metabolismo , Respuesta al Choque Térmico , Lactoperoxidasa/metabolismo , Proteínas Bacterianas/genética , Proteínas de Transporte de Catión/genética , Medios de Cultivo , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Prueba de Complementación Genética , Peróxido de Hidrógeno/farmacología , Mutación , Naftoquinonas/farmacología , Estrés Oxidativo , Salmonella typhimurium/genética , Salmonella typhimurium/metabolismo , Salmonella typhimurium/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA