Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Lancet Digit Health ; 3(6): e360-e370, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34045002

RESUMEN

BACKGROUND: Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 pandemic. METHODS: In this prospective analysis of surveillance data, laboratories in 26 countries and territories across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative. Numbers of weekly cases in 2020 were compared with corresponding data for 2018 and 2019. Data for invasive disease due to Streptococcus agalactiae, a non-respiratory pathogen, were collected from nine laboratories for comparison. The stringency of COVID-19 containment measures was quantified using the Oxford COVID-19 Government Response Tracker. Changes in population movements were assessed using Google COVID-19 Community Mobility Reports. Interrupted time-series modelling quantified changes in the incidence of invasive disease due to S pneumoniae, H influenzae, and N meningitidis in 2020 relative to when containment measures were imposed. FINDINGS: 27 laboratories from 26 countries and territories submitted data to the IRIS Initiative for S pneumoniae (62 837 total cases), 24 laboratories from 24 countries submitted data for H influenzae (7796 total cases), and 21 laboratories from 21 countries submitted data for N meningitidis (5877 total cases). All countries and territories had experienced a significant and sustained reduction in invasive diseases due to S pneumoniae, H influenzae, and N meningitidis in early 2020 (Jan 1 to May 31, 2020), coinciding with the introduction of COVID-19 containment measures in each country. By contrast, no significant changes in the incidence of invasive S agalactiae infections were observed. Similar trends were observed across most countries and territories despite differing stringency in COVID-19 control policies. The incidence of reported S pneumoniae infections decreased by 68% at 4 weeks (incidence rate ratio 0·32 [95% CI 0·27-0·37]) and 82% at 8 weeks (0·18 [0·14-0·23]) following the week in which significant changes in population movements were recorded. INTERPRETATION: The introduction of COVID-19 containment policies and public information campaigns likely reduced transmission of S pneumoniae, H influenzae, and N meningitidis, leading to a significant reduction in life-threatening invasive diseases in many countries worldwide. FUNDING: Wellcome Trust (UK), Robert Koch Institute (Germany), Federal Ministry of Health (Germany), Pfizer, Merck, Health Protection Surveillance Centre (Ireland), SpID-Net project (Ireland), European Centre for Disease Prevention and Control (European Union), Horizon 2020 (European Commission), Ministry of Health (Poland), National Programme of Antibiotic Protection (Poland), Ministry of Science and Higher Education (Poland), Agencia de Salut Pública de Catalunya (Spain), Sant Joan de Deu Foundation (Spain), Knut and Alice Wallenberg Foundation (Sweden), Swedish Research Council (Sweden), Region Stockholm (Sweden), Federal Office of Public Health of Switzerland (Switzerland), and French Public Health Agency (France).


Asunto(s)
Infecciones Bacterianas/epidemiología , COVID-19 , Infecciones del Sistema Respiratorio/epidemiología , Infecciones Bacterianas/transmisión , COVID-19/prevención & control , Haemophilus influenzae , Humanos , Incidencia , Análisis de Series de Tiempo Interrumpido , Neisseria meningitidis , Vigilancia de la Población , Estudios Prospectivos , Práctica de Salud Pública , Streptococcus agalactiae , Streptococcus pneumoniae
4.
Artículo en Inglés | MEDLINE | ID: mdl-28848714

RESUMEN

The term "spotty liver disease" (SLD) has been used since the late 1990s for a condition seen in the UK and Australia that primarily affects free range laying hens around peak lay, causing acute mortality and a fall in egg production. A novel thermophilic SLD-associated Campylobacter was reported in the United Kingdom (UK) in 2015. Subsequently, similar isolates occurring in Australia were formally described as a new species, Campylobacter hepaticus. We describe the comparative genomics of 10 C. hepaticus isolates recovered from 5 geographically distinct poultry holdings in the UK between 2010 and 2012. Hierarchical gene-by-gene analyses of the study isolates and representatives of 24 known Campylobacter species indicated that C. hepaticus is most closely related to the major pathogens Campylobacter jejuni and Campylobacter coli. We observed low levels of within-farm variation, even between isolates collected over almost 3 years. With respect to C. hepaticus genome features, we noted that the study isolates had a ~140 Kb reduction in genome size, ~144 fewer genes, and a lower GC content compared to C. jejuni. The most notable reduction was in the subsystem containing genes for iron acquisition and metabolism, supported by reduced growth of C. hepaticus in an iron depletion assay. Genome reduction is common among many pathogens and in C. hepaticus has likely been driven at least in part by specialization following the occupation of a new niche, the chicken liver.


Asunto(s)
Infecciones por Campylobacter/veterinaria , Campylobacter/genética , Hepatopatías/veterinaria , Enfermedades de las Aves de Corral/genética , Enfermedades de las Aves de Corral/microbiología , Animales , Australia , Infecciones por Campylobacter/genética , Pollos/genética , Tamaño del Genoma , Genoma Bacteriano , Hierro/metabolismo , Hepatopatías/genética , Hepatopatías/microbiología , Filogenia , Aves de Corral , Reino Unido , Secuenciación Completa del Genoma
5.
Front Microbiol ; 7: 1877, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27920773

RESUMEN

Isolates of the zoonotic pathogen Campylobacter are generally considered to be unable to metabolize glucose due to lack of key glycolytic enzymes. However, the Entner-Doudoroff (ED) pathway has been identified in Campylobacter jejuni subsp. doylei and a few C. coli isolates. A systematic search for ED pathway genes in a wide range of Campylobacter isolates and in the C. jejuni/coli PubMLST database revealed that 1.7% of >6,000 genomes encoded a complete ED pathway, including both C. jejuni and C. coli from diverse clinical, environmental and animal sources. In rich media, glucose significantly enhanced stationary phase survival of a set of ED-positive C. coli isolates. Unexpectedly, glucose massively promoted floating biofilm formation in some of these ED-positive isolates. Metabolic profiling by gas chromatography-mass spectrometry revealed distinct responses to glucose in a low biofilm strain (CV1257) compared to a high biofilm strain (B13117), consistent with preferential diversion of hexose-6-phosphate to polysaccharide in B13117. We conclude that while the ED pathway is rare amongst Campylobacter isolates causing human disease (the majority of which would be of agricultural origin), some glucose-utilizing isolates exhibit specific fitness advantages, including stationary-phase survival and biofilm production, highlighting key physiological benefits of this pathway in addition to energy conservation.

6.
J Clin Microbiol ; 54(12): 2882-2890, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27733632

RESUMEN

The application of whole-genome sequencing (WGS) to problems in clinical microbiology has had a major impact on the field. Clinical laboratories are now using WGS for pathogen identification, antimicrobial susceptibility testing, and epidemiological typing. WGS data also represent a valuable resource for the development and evaluation of molecular diagnostic assays, which continue to play an important role in clinical microbiology. To demonstrate this application of WGS, this study used publicly available genomic data to evaluate a duplex real-time PCR (RT-PCR) assay that targets mapA and ceuE for the detection of Campylobacter jejuni and Campylobacter coli, leading global causes of bacterial gastroenteritis. In silico analyses of mapA and ceuE primer and probe sequences from 1,713 genetically diverse C. jejuni and C. coli genomes, supported by RT-PCR testing, indicated that the assay was robust, with 1,707 (99.7%) isolates correctly identified. The high specificity of the mapA-ceuE assay was the result of interspecies diversity and intraspecies conservation of the target genes in C. jejuni and C. coli Rare instances of a lack of specificity among C. coli isolates were due to introgression in mapA or sequence diversity in ceuE The results of this study illustrate how WGS can be exploited to evaluate molecular diagnostic assays by using publicly available data, online databases, and open-source software.


Asunto(s)
Proteínas Bacterianas/genética , Infecciones por Campylobacter/diagnóstico , Campylobacter coli/genética , Campylobacter jejuni/genética , Proteínas Portadoras/genética , Gastroenteritis/diagnóstico , Genoma Bacteriano/genética , Proteínas de la Membrana/genética , Técnicas de Diagnóstico Molecular/métodos , Secuencia de Bases , Infecciones por Campylobacter/tratamiento farmacológico , Infecciones por Campylobacter/microbiología , Campylobacter coli/clasificación , Campylobacter coli/aislamiento & purificación , Campylobacter jejuni/clasificación , Campylobacter jejuni/aislamiento & purificación , Gastroenteritis/microbiología , Humanos , Proteínas de Unión a Hierro , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ADN
7.
Environ Microbiol Rep ; 7(5): 782-8, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26109474

RESUMEN

The contribution of wild birds as a source of human campylobacteriosis was investigated in Oxfordshire, United Kingdom (UK) over a 10 year period. The probable origin of human Campylobacter jejuni genotypes, as described by multilocus sequence typing, was estimated by comparison with reference populations of isolates from farm animals and five wild bird families, using the STRUCTURE algorithm. Wild bird-attributed isolates accounted for between 476 (2.1%) and 543 (3.5%) cases annually. This proportion did not vary significantly by study year (P = 0.934) but varied seasonally, with wild bird-attributed genotypes comprising a greater proportion of isolates during warmer compared with cooler months (P = 0.003). The highest proportion of wild bird-attributed illness occurred in August (P < 0.001), with a significantly lower proportion in November (P = 0.018). Among genotypes attributed to specific groups of wild birds, seasonality was most apparent for Turdidae-attributed isolates, which were absent during cooler, winter months. This study is consistent with some wild bird species representing a persistent source of campylobacteriosis, and contributing a distinctive seasonal pattern to disease burden. If Oxfordshire is representative of the UK as a whole in this respect, these data suggest that the national burden of wild bird-attributed isolates could be in the order of 10,000 annually.


Asunto(s)
Aves/microbiología , Infecciones por Campylobacter/epidemiología , Infecciones por Campylobacter/veterinaria , Campylobacter jejuni/clasificación , Campylobacter jejuni/aislamiento & purificación , Animales , Infecciones por Campylobacter/microbiología , Campylobacter jejuni/genética , Genotipo , Humanos , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Estaciones del Año , Reino Unido/epidemiología
8.
Nat Rev Microbiol ; 11(10): 728-36, 2013 10.
Artículo en Inglés | MEDLINE | ID: mdl-23979428

RESUMEN

Multilocus sequence typing (MLST) was proposed in 1998 as a portable sequence-based method for identifying clonal relationships among bacteria. Today, in the whole-genome era of microbiology, the need for systematic, standardized descriptions of bacterial genotypic variation remains a priority. Here, to meet this need, we draw on the successes of MLST and 16S rRNA gene sequencing to propose a hierarchical gene-by-gene approach that reflects functional and evolutionary relationships and catalogues bacteria 'from domain to strain'. Our gene-based typing approach using online platforms such as the Bacterial Isolate Genome Sequence Database (BIGSdb) allows the scalable organization and analysis of whole-genome sequence data.


Asunto(s)
Bacterias/clasificación , Genoma Bacteriano , Genómica/métodos , Tipificación de Secuencias Multilocus/métodos , Alelos , Bacterias/genética , Técnicas de Tipificación Bacteriana/métodos , Secuencia de Bases , Bases de Datos Genéticas , Evolución Molecular , Variación Genética , ARN Bacteriano/análisis , ARN Bacteriano/genética , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
9.
BMC Microbiol ; 12: 46, 2012 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-22448673

RESUMEN

BACKGROUND: Since 2001, several studies have reported high rifampicin resistance rates (45 - 100%) among methicillin-resistant Staphylococcus aureus (MRSA) isolates from South Africa. The authors previously characterised 100 MRSA isolates from hospitals in Cape Town, South Africa; forty-five percent of these isolates were rifampicin-resistant. The majority (44/45) corresponded to ST612-MRSA-IV, which is prevalent in South Africa, but has not been reported frequently elsewhere. The remaining rifampicin-resistant isolate corresponded to ST5-MRSA-I. The aim of this study was to investigate further the prevalence and genetic basis of rifampicin-resistance in MRSA isolates from hospitals in Cape Town. RESULTS: Between July 2007 and June 2011, the prevalence of rifampicin-resistant MRSA in hospitals in Cape Town ranged from 39.7% to 46.4%. Based on the results of the aforementioned study, nine ST612-MRSA-IV isolates, the rifampicin-resistant ST5-MRSA-I isolate, and two rifampicin-susceptible MRSA isolates were investigated. Four previously described ST612-MRSA-IV isolates, including two each from South Africa and Australia, were also included.The ST5-MRSA-I isolate carried a single mutational change, H481Y, commonly associated with high-level rifampicin resistance. All ST612-MRSA-IV isolates carried an uncommon double amino acid substitution in RpoB, H481N, I527M, whilst one of the Australian ST612-MRSA-IV isolates carried an additional mutation within rpoB, representing a novel rpoB genotype: H481N, I527M, K579R. All ST612-MRSA-IV isolates also shared a unique silent single nucleotide polymorphism (SNP) within rpoB. CONCLUSIONS: That local ST612-MRSA-IV isolates described here share an uncommon rpoB genotype and a unique silent SNP suggests this clone may have undergone clonal expansion in hospitals in Cape Town. Further, the data suggest that these isolates may be related to rifampicin-resistant ST612-MRSA-IV previously described in South Africa and Australia.


Asunto(s)
Farmacorresistencia Bacteriana Múltiple/genética , Hospitales , Staphylococcus aureus Resistente a Meticilina/genética , Rifampin/farmacología , Antibacterianos/farmacología , Análisis Mutacional de ADN , ADN Bacteriano/genética , Genotipo , Humanos , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Polimorfismo de Nucleótido Simple , Sudáfrica/epidemiología , Infecciones Estafilocócicas/epidemiología , Infecciones Estafilocócicas/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...