Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Clin Invest ; 131(4)2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-33586683

RESUMEN

The relationship between adiposity and metabolic health is well established. However, very little is known about the fat depot, known as paracardial fat (pCF), located superior to and surrounding the heart. Here, we show that pCF remodels with aging and a high-fat diet and that the size and function of this depot are controlled by alcohol dehydrogenase 1 (ADH1), an enzyme that oxidizes retinol into retinaldehyde. Elderly individuals and individuals with obesity have low ADH1 expression in pCF, and in mice, genetic ablation of Adh1 is sufficient to drive pCF accumulation, dysfunction, and global impairments in metabolic flexibility. Metabolomics analysis revealed that pCF controlled the levels of circulating metabolites affecting fatty acid biosynthesis. Also, surgical removal of the pCF depot was sufficient to rescue the impairments in cardiometabolic flexibility and fitness observed in Adh1-deficient mice. Furthermore, treatment with retinaldehyde prevented pCF remodeling in these animals. Mechanistically, we found that the ADH1/retinaldehyde pathway works by driving PGC-1α nuclear translocation and promoting mitochondrial fusion and biogenesis in the pCF depot. Together, these data demonstrate that pCF is a critical regulator of cardiometabolic fitness and that retinaldehyde and its generating enzyme ADH1 act as critical regulators of adipocyte remodeling in the pCF depot.


Asunto(s)
Tejido Adiposo/enzimología , Alcohol Deshidrogenasa/metabolismo , Mitocondrias Cardíacas/metabolismo , Obesidad/enzimología , Pericardio/enzimología , Tejido Adiposo/patología , Alcohol Deshidrogenasa/deficiencia , Animales , Núcleo Celular/genética , Núcleo Celular/metabolismo , Metabolómica , Ratones , Ratones Noqueados , Mitocondrias Cardíacas/genética , Mitocondrias Cardíacas/patología , Obesidad/genética , Obesidad/patología , Pericardio/patología , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/metabolismo , Retinaldehído/metabolismo , Transducción de Señal/genética
2.
Nat Commun ; 11(1): 512, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31980605

RESUMEN

Mechanisms for human sinoatrial node (SAN) dysfunction are poorly understood and whether human SAN excitability requires voltage-gated sodium channels (Nav) remains controversial. Here, we report that neuronal (n)Nav blockade and selective nNav1.6 blockade during high-resolution optical mapping in explanted human hearts depress intranodal SAN conduction, which worsens during autonomic stimulation and overdrive suppression to conduction failure. Partial cardiac (c)Nav blockade further impairs automaticity and intranodal conduction, leading to beat-to-beat variability and reentry. Multiple nNav transcripts are higher in SAN vs atria; heterogeneous alterations of several isoforms, specifically nNav1.6, are associated with heart failure and chronic alcohol consumption. In silico simulations of Nav distributions suggest that INa is essential for SAN conduction, especially in fibrotic failing hearts. Our results reveal that not only cNav but nNav are also integral for preventing disease-induced failure in human SAN intranodal conduction. Disease-impaired nNav may underlie patient-specific SAN dysfunctions and should be considered to treat arrhythmias.


Asunto(s)
Arritmias Cardíacas/fisiopatología , Sistema de Conducción Cardíaco/fisiopatología , Neuronas/metabolismo , Nodo Sinoatrial/fisiopatología , Canales de Sodio/metabolismo , Potenciales de Acción/fisiología , Adulto , Anciano , Alcoholismo/genética , Arritmias Cardíacas/genética , Enfermedad Crónica , Simulación por Computador , Femenino , Atrios Cardíacos/metabolismo , Atrios Cardíacos/fisiopatología , Sistema de Conducción Cardíaco/metabolismo , Insuficiencia Cardíaca/genética , Humanos , Masculino , Persona de Mediana Edad , Modelos Cardiovasculares , Imagen Óptica , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Nodo Sinoatrial/metabolismo , Canales de Sodio/genética , Estrés Fisiológico , Adulto Joven
3.
J Clin Invest ; 129(8): 3171-3184, 2019 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-31264976

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited arrhythmia syndrome characterized by severe structural and electrical cardiac phenotypes, including myocardial fibrofatty replacement and sudden cardiac death. Clinical management of ACM is largely palliative, owing to an absence of therapies that target its underlying pathophysiology, which stems partially from our limited insight into the condition. Following identification of deceased ACM probands possessing ANK2 rare variants and evidence of ankyrin-B loss of function on cardiac tissue analysis, an ANK2 mouse model was found to develop dramatic structural abnormalities reflective of human ACM, including biventricular dilation, reduced ejection fraction, cardiac fibrosis, and premature death. Desmosomal structure and function appeared preserved in diseased human and murine specimens in the presence of markedly abnormal ß-catenin expression and patterning, leading to identification of a previously unknown interaction between ankyrin-B and ß-catenin. A pharmacological activator of the WNT/ß-catenin pathway, SB-216763, successfully prevented and partially reversed the murine ACM phenotypes. Our findings introduce what we believe to be a new pathway for ACM, a role of ankyrin-B in cardiac structure and signaling, a molecular link between ankyrin-B and ß-catenin, and evidence for targeted activation of the WNT/ß-catenin pathway as a potential treatment for this disease.


Asunto(s)
Ancirinas , Displasia Ventricular Derecha Arritmogénica , Miocardio , Vía de Señalización Wnt , Animales , Ancirinas/genética , Ancirinas/metabolismo , Displasia Ventricular Derecha Arritmogénica/genética , Displasia Ventricular Derecha Arritmogénica/metabolismo , Displasia Ventricular Derecha Arritmogénica/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Indoles/farmacología , Masculino , Maleimidas/farmacología , Ratones , Ratones Noqueados , Miocardio/metabolismo , Miocardio/patología , beta Catenina/genética , beta Catenina/metabolismo
4.
JCI Insight ; 52019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31194698

RESUMEN

Arrhythmogenic cardiomyopathy (ACM) is an inherited disorder with variable genetic etiologies. Here we focused on understanding the precise molecular pathology of a single clinical variant in DSP, the gene encoding desmoplakin. We initially identified a novel missense desmoplakin variant (p.R451G) in a patient diagnosed with biventricular ACM. An extensive single-family ACM cohort was assembled, revealing a pattern of coinheritance for R451G desmoplakin and the ACM phenotype. An in vitro model system using patient-derived induced pluripotent stem cell lines showed depressed levels of desmoplakin in the absence of abnormal electrical propagation. Molecular dynamics simulations of desmoplakin R451G revealed no overt structural changes, but a significant loss of intramolecular interactions surrounding a putative calpain target site was observed. Protein degradation assays of recombinant desmoplakin R451G confirmed increased calpain vulnerability. In silico screening identified a subset of 3 additional ACM-linked desmoplakin missense mutations with apparent enhanced calpain susceptibility, predictions that were confirmed experimentally. Like R451G, these mutations are found in families with biventricular ACM. We conclude that augmented calpain-mediated degradation of desmoplakin represents a shared pathological mechanism for select ACM-linked missense variants. This approach for identifying variants with shared molecular pathologies may represent a powerful new strategy for understanding and treating inherited cardiomyopathies.


Asunto(s)
Arritmias Cardíacas/genética , Calpaína/metabolismo , Cardiomiopatías/genética , Desmoplaquinas/metabolismo , Predisposición Genética a la Enfermedad/genética , Mutación , Adulto , Arritmias Cardíacas/metabolismo , Arritmias Cardíacas/patología , Calpaína/farmacología , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Desmoplaquinas/antagonistas & inhibidores , Desmoplaquinas/química , Femenino , Glicina , Corazón , Insuficiencia Cardíaca , Humanos , Masculino , Persona de Mediana Edad , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Mutación Missense , Linaje , Fenotipo , Proteínas Recombinantes , Células Madre
5.
JCI Insight ; 2(21)2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29093270

RESUMEN

An ascending aortic aneurysm (AscAA) is a life-threatening disease whose molecular basis is poorly understood. Mutations in NOTCH1 have been linked to bicuspid aortic valve (BAV), which is associated with AscAA. Here, we describe a potentially novel role for Notch1 in AscAA. We found that Notch1 haploinsufficiency exacerbated the aneurysmal aortic root dilation seen in the Marfan syndrome mouse model and that heterozygous deletion of Notch1 in the second heart field (SHF) lineage recapitulated this exacerbated phenotype. Additionally, Notch1+/- mice in a predominantly 129S6 background develop aortic root dilation, indicating that loss of Notch1 is sufficient to cause AscAA. RNA sequencing analysis of the Notch1.129S6+/- aortic root demonstrated gene expression changes consistent with AscAA. These findings are the first to our knowledge to demonstrate an SHF lineage-specific role for Notch1 in AscAA and suggest that genes linked to the development of BAV may also contribute to the associated aortopathy.


Asunto(s)
Aneurisma de la Aorta/genética , Válvula Aórtica/anomalías , Predisposición Genética a la Enfermedad , Haploinsuficiencia , Receptor Notch1/genética , Animales , Aorta , Aneurisma de la Aorta/patología , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/patología , Enfermedad de la Válvula Aórtica Bicúspide , Modelos Animales de Enfermedad , Expresión Génica , Estudios de Asociación Genética , Enfermedades de las Válvulas Cardíacas , Ratones , Ratones Noqueados , Mutación , Fenotipo
6.
Mol Ther ; 21(3): 520-5, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23319059

RESUMEN

Duchenne muscular dystrophy (DMD) is a severe muscle disease caused by mutations in the DMD gene, with loss of its gene product, dystrophin. Dystrophin helps link integral membrane proteins to the actin cytoskeleton and stabilizes the sarcolemma during muscle activity. We investigated an alternative therapeutic approach to dystrophin replacement by overexpressing human α7 integrin (ITGA7) using adeno-associated virus (AAV) delivery. ITGA7 is a laminin receptor in skeletal and cardiac muscle that links the extracellular matrix (ECM) to the actin skeleton. It is modestly upregulated in DMD muscle and has been proposed to be an important modifier of dystrophic symptoms. We delivered rAAV8.MCK.ITGA7 to the lower limb of mdx mice through isolated limb perfusion (ILP) of the femoral artery. We demonstrated ~50% of fibers in the tibialis anterior (TA) and extensor digitorum longus (EDL) overexpressing α7 integrin at the sarcolemma following AAV gene transfer. The increase in ITGA7 in skeletal muscle significantly protected against loss of force following eccentric contraction-induced injury compared with untreated (contralateral) muscles while specific force following tetanic contraction was unchanged. Reversal of additional dystrophic features included reduced Evans blue dye (EBD) uptake and increased muscle fiber diameter. Taken together, this data shows that rAAV8.MCK.ITGA7 gene transfer stabilizes the sarcolemma potentially preserving mdx muscle from further damage. This therapeutic approach demonstrates promise as a viable treatment for DMD with further implications for other forms of muscular dystrophy.


Asunto(s)
Antígenos CD/genética , Dependovirus/genética , Vectores Genéticos , Cadenas alfa de Integrinas/genética , Distrofia Muscular de Duchenne/terapia , Animales , Antígenos CD/metabolismo , Modelos Animales de Enfermedad , Distrofina/genética , Distrofina/metabolismo , Matriz Extracelular/metabolismo , Técnicas de Transferencia de Gen , Terapia Genética/métodos , Humanos , Cadenas alfa de Integrinas/metabolismo , Ratones , Ratones Endogámicos mdx , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/fisiopatología , Mutación , Sarcolema/genética , Regulación hacia Arriba
7.
J Transl Med ; 9: 68, 2011 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-21586145

RESUMEN

BACKGROUND: Duchenne muscular dystrophy (DMD) is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain), targeted at blunting Nuclear Factor κB (NF-κB) signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. METHODS: To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko) mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted ß-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as ß-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. RESULTS: At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to ß-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. CONCLUSIONS: We conclude that NBD can significantly improve cardiac contractile dysfunction in the dko mouse model of DMD and may thus provide a novel therapeutic treatment for heart failure.


Asunto(s)
Distrofina/deficiencia , Distrofia Muscular Animal/fisiopatología , Contracción Miocárdica/efectos de los fármacos , FN-kappa B/antagonistas & inhibidores , Péptidos/farmacología , Utrofina/deficiencia , Animales , Modelos Animales de Enfermedad , Distrofina/metabolismo , Ratones , Ratones Noqueados , Distrofia Muscular Animal/tratamiento farmacológico , Miocardio/metabolismo , Miocardio/patología , FN-kappa B/metabolismo , Péptidos/uso terapéutico , Receptores Adrenérgicos beta/metabolismo , Utrofina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...