Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 188
Filtrar
1.
Nanophotonics ; 13(14): 2531-2540, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38836103

RESUMEN

The short exciton diffusion length in organic semiconductors results in a strong dependence of the conversion efficiency of organic photovoltaic (OPV) cells on the morphology of the donor-acceptor bulk-heterojunction blend. Strong light-matter coupling provides a way to circumvent this dependence by combining the favorable properties of light and matter via the formation of hybrid exciton-polaritons. By strongly coupling excitons in P3HT-C60 OPV cells to Fabry-Perot optical cavity modes, exciton-polaritons are formed with increased propagation lengths. We exploit these exciton-polaritons to enhance the internal quantum efficiency of the cells, determined from the external quantum efficiency and the absorptance. Additionally, we find a consistent decrease in the Urbach energy for the strongly coupled cells, which indicates the reduction of energetic disorder due to the delocalization of exciton-polaritons in the optical cavity.

2.
Angew Chem Int Ed Engl ; 63(13): e202314856, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38305510

RESUMEN

Bandgap-tuneable mixed-halide 3D perovskites are of interest for multi-junction solar cells, but suffer from photoinduced spatial halide segregation. Mixed-halide 2D perovskites are more resistant to halide segregation and are promising coatings for 3D perovskite solar cells. The properties of mixed-halide compositions depend on the local halide distribution, which is challenging to study at the level of single octahedra. In particular, it has been suggested that there is a preference for occupation of the distinct axial and equatorial halide sites in mixed-halide 2D perovskites. 207 Pb NMR can be used to probe the atomic-scale structure of lead-halide materials, but although the isotropic 207 Pb shift is sensitive to halide stoichiometry, it cannot distinguish configurational isomers. Here, we use 2D isotropic-anisotropic correlation 207 Pb NMR and relativistic DFT calculations to distinguish the [PbX6 ] configurations in mixed iodide-bromide 3D FAPb(Br1-x Ix )3 perovskites and 2D BA2 Pb(Br1-x Ix )4 perovskites based on formamidinium (FA+ ) and butylammonium (BA+ ), respectively. We find that iodide preferentially occupies the axial site in BA-based 2D perovskites, which may explain the suppressed halide mobility.

3.
Nat Commun ; 15(1): 1276, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-38341428

RESUMEN

The efficiency of perovskite solar cells is affected by open-circuit voltage losses due to radiative and non-radiative charge recombination. When estimated using sensitive photocurrent measurements that cover the above- and sub-bandgap regions, the radiative open-circuit voltage is often unphysically low. Here we report sensitive photocurrent and electroluminescence spectroscopy to probe radiative recombination at sub-bandgap defects in wide-bandgap mixed-halide lead perovskite solar cells. The radiative ideality factor associated with the optical transitions increases from 1, above and near the bandgap edge, to ~2 at mid-bandgap. Such photon energy-dependent ideality factor corresponds to a many-diode model. The radiative open-circuit voltage limit derived from this many-diode model enables differentiating between radiative and non-radiative voltage losses. The latter are deconvoluted into contributions from the bulk and interfaces via determining the quasi-Fermi level splitting. The experiments show that while sub-bandgap defects do not contribute to radiative voltage loss, they do affect non-radiative voltage losses.

4.
ACS Mater Lett ; 6(1): 267-274, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38178980

RESUMEN

Crystallization of low-dimensional perovskites is a complex process that leads to multidimensional films comprising two-dimensional (2D), quasi-2D, and three-dimensional (3D) phases. Most quasi-2D perovskite films possess a regular gradient with 2D phases located at the bottom of the film and 3D phases at the top. Recently, multiple studies have reported reverse-graded perovskite films, where the location of the 2D and 3D structures is inverted. The underlying reasons for such a peculiar phase distribution are unclear. While crystallization of regular-graded quasi-2D perovskites has been described as starting with 3D phases from the liquid-air interface, the film formation of reverse-graded films has not been investigated yet. Here, we examine the impact of the alkyl chain length on the formation of regular- and reverse-graded perovskites using n-alkylammonium ions. We find that long alkyl chains reverse the phase distribution gradient. By combining photoluminescence spectroscopy with in situ optical absorption measurements, we demonstrate that crystallization starts at the liquid-N2 interface, though as 3D phases for short-chain n-alkylammonium ions and as quasi-2D phases for long chains. We link this behavior to enhanced van der Waals interactions between long-chain n-alkylammonium ions in polar solvents and their tendency to accumulate at the liquid-N2 interface, creating a concentration gradient along the film thickness.

5.
Adv Mater ; 36(1): e2305567, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37722700

RESUMEN

Bandgap tunability of lead mixed halide perovskites (LMHPs) is a crucial characteristic for versatile optoelectronic applications. Nevertheless, LMHPs show the formation of iodide-rich (I-rich) phase under illumination, which destabilizes the semiconductor bandgap and impedes their exploitation. Here, it is shown that how I2 , photogenerated upon charge carrier trapping at iodine interstitials in LMHPs, can promote the formation of I-rich phase. I2 can react with bromide (Br- ) in the perovskite to form a trihalide ion I2 Br- (Iδ- -Iδ+ -Brδ- ), whose negatively charged iodide (Iδ- ) can further exchange with another lattice Br- to form the I-rich phase. Importantly, it is observed that the effectiveness of the process is dependent on the overall stability of the crystalline perovskite structure. Therefore, the bandgap instability in LMHPs is governed by two factors, i.e., the density of native defects leading to I2 production and the Br- binding strength within the crystalline unit. Eventually, this study provides rules for the design of chemical composition in LMHPs to reach their full potential for optoelectronic devices.

6.
Digit Discov ; 2(4): 1016-1025, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-38013813

RESUMEN

Organic cathode materials are attractive candidates for the development of high-performance Li-ion batteries (LIBs). The chemical space of candidate molecules is too vast to be explored solely by experiments; however, it can be systematically explored by a high-throughput computational search that incorporates a spectrum of screening techniques. Here, we present a time- and resource-efficient computational scheme that incorporates machine learning and semi-empirical quantum mechanical methods to study the chemical space of approximately 200 000 quinone-based molecules for use as cathode materials in LIBs. By performing an automated search on a commercial vendor database, computing battery-relevant properties such as redox potential, gravimetric charge capacity, gravimetric energy density, and synthetic complexity score, and evaluating the structural integrity upon the lithiation process, a total of 349 molecules were identified as potentially high-performing cathode materials for LIBs. The chemical space of the screened candidates was visualized using dimensionality reduction methods with the aim of further downselecting the best candidates for experimental validation. One such directly purchasable candidate, 1,4,9,10-anthracenetetraone, was analyzed through cyclic voltammetry experiments. The measured redox potentials of the two lithiation steps, , of 3.3 and 2.4 V, were in good agreement with the predicted redox potentials, , of 3.2 and 2.3 V vs. Li/Li+, respectively. Lastly, to lay out the principles for rational design of quinone-based cathode materials beyond the current work, we constructed and discussed the quantitative structure property relationships of quinones based on the data generated from the calculations.

7.
Energy Adv ; 2(6): 820-828, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37323160

RESUMEN

High-throughput virtual screening (HTVS) has been increasingly applied as an effective approach to find candidate materials for energy applications. We performed a HTVS study, which is powered by: (i) automated virtual screening library generation, (ii) automated search on a readily purchasable chemical space of quinone-based compounds, and (iii) computed physicochemical descriptors for the prediction of key battery-related features of compounds, including the reduction potential, gravimetric energy density, gravimetric charge capacity, and molecular stability. From the initial virtual library of approximately 450k molecules, a total of 326 compounds have been identified as commercially available. Among them, 289 of the molecules are predicted to be stable for the sodiation reactions that take place at the sodium-ion battery cathodes. To study the behaviour of molecules over time at room temperature, we performed molecular dynamics simulations on a group of sodiated product molecules, which was narrowed down to 21 quinones after scrutinizing the key battery performance indicators. As a result, 17 compounds are suggested for validation as candidate cathode materials in sodium-ion batteries.

8.
ACS Appl Energy Mater ; 6(10): 5217-5229, 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37234970

RESUMEN

Monolithic perovskite/c-Si tandem solar cells have attracted enormous research attention and have achieved efficiencies above 30%. This work describes the development of monolithic tandem solar cells based on silicon heterojunction (SHJ) bottom- and perovskite top-cells and highlights light management techniques assisted by optical simulation. We first engineered (i)a-Si:H passivating layers for (100)-oriented flat c-Si surfaces and combined them with various (n)a-Si:H, (n)nc-Si:H, and (n)nc-SiOx:H interfacial layers for SHJ bottom-cells. In a symmetrical configuration, a long minority carrier lifetime of 16.9 ms was achieved when combining (i)a-Si:H bilayers with (n)nc-Si:H (extracted at the minority carrier density of 1015 cm-3). The perovskite sub-cell uses a photostable mixed-halide composition and surface passivation strategies to minimize energetic losses at charge-transport interfaces. This allows tandem efficiencies above 23% (a maximum of 24.6%) to be achieved using all three types of (n)-layers. Observations from experimentally prepared devices and optical simulations indicate that both (n)nc-SiOx:H and (n)nc-Si:H are promising for use in high-efficiency tandem solar cells. This is possible due to minimized reflection at the interfaces between the perovskite and SHJ sub-cells by optimized interference effects, demonstrating the applicability of such light management techniques to various tandem structures.

9.
ACS Appl Energy Mater ; 6(7): 3933-3943, 2023 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-37064411

RESUMEN

2H-Benzotriazol-2-ylethylammonium bromide and iodide and its difluorinated derivatives are synthesized and employed as interlayers for passivation of formamidinium lead triiodide (FAPbI3) solar cells. In combination with PbI2 and PbBr2, these benzotriazole derivatives form two-dimensional (2D) Ruddlesden-Popper perovskites (RPPs) as evidenced by their crystal structures and thin film characteristics. When used to passivate n-i-p FAPbI3 solar cells, the power conversion efficiency improves from 20% to close to 22% by enhancing the open-circuit voltage. Quasi-Fermi level splitting experiments and scanning electron microscopy cathodoluminescence hyperspectral imaging reveal that passivation provides a reduced nonradiative recombination at the interface between the perovskite and hole transport layer. Photoluminescence spectroscopy, angle-resolved grazing-incidence wide-angle X-ray scattering, and depth profiling X-ray photoelectron spectroscopy studies of the 2D/three-dimensional (3D) interface between the benzotriazole RPP and FAPbI3 show that a nonuniform layer of 2D perovskites is enough to passivate defects, enhance charge extraction, and decrease nonradiative recombination.

10.
ACS Energy Lett ; 8(4): 1662-1670, 2023 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-37090170

RESUMEN

Photoinduced halide segregation hinders widespread application of three-dimensional (3D) mixed-halide perovskites. Much less is known about this phenomenon in lower-dimensional systems. Here, we study photoinduced halide segregation in lower-dimensional mixed iodide-bromide perovskites (PEA2MA n-1Pb n (Br x I1-x )3n+1, with PEA+: phenethylammonium and MA+: methylammonium) through time-dependent photoluminescence (PL) spectroscopy. We show that layered two-dimensional (2D) structures render additional stability against the demixing of halide phases under illumination. We ascribe this behavior to reduced halide mobility due to the intrinsic heterogeneity of 2D mixed-halide perovskites, which we demonstrate via 207Pb solid-state NMR. However, the dimensionality of the 2D phase is critical in regulating photostability. By tracking the PL of multidimensional perovskite films under illumination, we find that while halide segregation is largely inhibited in 2D perovskites (n = 1), it is not suppressed in quasi-2D phases (n = 2), which display a behavior intermediate between 2D and 3D and a peculiar absence of halide redistribution in the dark that is only induced at higher temperature for the quasi-2D phase.

11.
Sci Adv ; 9(7): eadf9861, 2023 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-36800431

RESUMEN

Remote measurement of vital sign parameters like heartbeat and respiration rate represents a compelling challenge in monitoring an individual's health in a noninvasive way. This could be achieved by large field-of-view, easy-to-integrate unobtrusive sensors, such as large-area thin-film photodiodes. At long distances, however, discriminating weak light signals from background disturbance demands superior near-infrared (NIR) sensitivity and optical noise tolerance. Here, we report an inherently narrowband solution-processed, thin-film photodiode with ultrahigh and controllable NIR responsivity based on a tandem-like perovskite-organic architecture. The device has low dark currents (<10-6 mA cm-2), linear dynamic range >150 dB, and operational stability over time (>8 hours). With a narrowband quantum efficiency that can exceed 200% at 850 nm and intrinsic filtering of other wavelengths to limit optical noise, the device exhibits higher tolerance to background light than optically filtered silicon-based sensors. We demonstrate its potential in remote monitoring by measuring the heart rate and respiration rate from distances up to 130 cm in reflection.

12.
ChemSusChem ; 16(6): e202300006, 2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36601966

RESUMEN

Creating new donor materials is crucial for further advancing organic solar cells. Random terpolymers have been adopted to overcome shortcomings of regular alternating donor-acceptor (D-A) polymers of which the performance is often susceptible to batch-to-batch variations. In general, the properties and performance of efficient D1 -A-D2 -A and D-A1 -D-A2 terpolymers are sensitive to the D1 /D2 or A1 /A2 monomer ratios. Side-chain hybridization is a strategy to address this problem. Here, six D1 -A-D2 -A-type random terpolymers comprising D1 and D2 monomers with the same π-conjugated D unit but with different side chains were synthesized. The side chains, containing either fluorine or trialkylsilyl substituents were chosen to provide near-identical optoelectronic properties but provide a tool to create a better-optimized film morphology when blended with a non-fullerene acceptor. This strategy allows improving the device performance to over 18 %, higher than that obtained with the corresponding D1 -A or D2 -A bipolymers (around 17 %). Hence, side-chain hybridization is a promising strategy to design efficient D1 -A-D2 -A terpolymer donors that are insensitive to the D1 /D2 monomer ratio, which is beneficial for the scaled-up synthesis of high-performance materials.

13.
Nanoscale ; 15(2): 553-561, 2023 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-36533584

RESUMEN

As a versatile class of semiconductors, diketopyrrolopyrrole (DPP)-based conjugated polymers are well suited for applications of next-generation plastic electronics because of their excellent and tunable optoelectronic properties via a rational design of chemical structures. However, it remains a challenge to unravel and eventually influence the correlation between their solution-state aggregation and solid-state microstructure. In this contribution, the solution-state aggregation of high molecular weight PDPP3T is effectively enhanced by solvent selectivity, and a fibril-like nanostructure with short-range and long-range order is generated and tuned in thin films. The predominant role of solvent quality on polymer packing orientation is revealed, with an orientational transition from a face-on to an edge-on texture for the same PDPP3T. The resultant edge-on arranged films lead to a significant improvement in charge transport in transistors, and the field-effect hole mobility reaches 2.12 cm2 V-1 s-1 with a drain current on/off ratio of up to 108. Our findings offer a new strategy for enhancing the device performance of polymer electronic devices.

14.
Adv Mater ; 35(8): e2209598, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36482790

RESUMEN

Organic bulk heterojunction photodiodes (OPDs) attract attention for sensing and imaging. Their detectivity is typically limited by a substantial reverse bias dark current density (Jd ). Recently, using thermal admittance or spectral photocurrent measurements, Jd has been attributed to thermal charge generation mediated by mid-gap states. Here, the temperature dependence of Jd in state-of-the-art OPDs is reported with Jd down to 10-9  mA cm-2 at -0.5 V bias. For a variety of donor-acceptor bulk-heterojunction blends it is found that the thermal activation energy of Jd is lower than the effective bandgap of the blends, by ca. 0.3 to 0.5 eV, but higher than expected for mid-gap states. Ultra-sensitive sub-bandgap photocurrent spectroscopy reveals that the minimum photon energy for optical charge generation in OPDs correlates with the dark current thermal activation energy. The dark current in OPDs is attributed to thermal charge generation at the donor-acceptor interface mediated by intra-gap states near the band edges.

15.
Glob Ecol Biogeogr ; 31(8): 1526-1541, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36247232

RESUMEN

Aim: Macroecological studies that require habitat suitability data for many species often derive this information from expert opinion. However, expert-based information is inherently subjective and thus prone to errors. The increasing availability of GPS tracking data offers opportunities to evaluate and supplement expert-based information with detailed empirical evidence. Here, we compared expert-based habitat suitability information from the International Union for Conservation of Nature (IUCN) with habitat suitability information derived from GPS-tracking data of 1,498 individuals from 49 mammal species. Location: Worldwide. Time period: 1998-2021. Major taxa studied: Forty-nine terrestrial mammal species. Methods: Using GPS data, we estimated two measures of habitat suitability for each individual animal: proportional habitat use (proportion of GPS locations within a habitat type), and selection ratio (habitat use relative to its availability). For each individual we then evaluated whether the GPS-based habitat suitability measures were in agreement with the IUCN data. To that end, we calculated the probability that the ranking of empirical habitat suitability measures was in agreement with IUCN's classification into suitable, marginal and unsuitable habitat types. Results: IUCN habitat suitability data were in accordance with the GPS data (> 95% probability of agreement) for 33 out of 49 species based on proportional habitat use estimates and for 25 out of 49 species based on selection ratios. In addition, 37 and 34 species had a > 50% probability of agreement based on proportional habitat use and selection ratios, respectively. Main conclusions: We show how GPS-tracking data can be used to evaluate IUCN habitat suitability data. Our findings indicate that for the majority of species included in this study, it is appropriate to use IUCN habitat suitability data in macroecological studies. Furthermore, we show that GPS-tracking data can be used to identify and prioritize species and habitat types for re-evaluation of IUCN habitat suitability data.

16.
Adv Mater ; 34(40): e2205261, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36000490

RESUMEN

Low-dimensional perovskites attract increasing interest due to tunable optoelectronic properties and high stability. Here, it is shown that perovskite thin films with a vertical gradient in dimensionality result in graded electronic bandgap structures that are ideal for photodiode applications. Positioning low-dimensional, vertically-oriented perovskite phases at the interface with the electron blocking layer increases the activation energy for thermal charge generation and thereby effectively lowers the dark current density to a record-low value of 5 × 10-9  mA cm-2 without compromising responsivity, resulting in a noise-current-based specific detectivity exceeding 7 × 1012 Jones at 600 nm. These multidimensional perovskite photodiodes show promising air stability and a dynamic range over ten orders of magnitude, and thus represent a new generation of high-performance low-cost photodiodes.

17.
Transbound Emerg Dis ; 69(6): 3339-3349, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35988158

RESUMEN

In the Netherlands, 69 of the 126 (55%) mink farms in total became infected with SARS-CoV-2 in 2020. Despite strict biosecurity measures and extensive epidemiological investigations, the main transmission route remained unclear. A better understanding of SARS-CoV-2 transmission between mink farms is of relevance for countries where mink farming is still common practice and can be used as a case study to improve future emerging disease preparedness. We assessed whether SARS-CoV-2 spilled over from mink to free-ranging animals, and whether free-ranging animals may have played a role in farm-to-farm transmission in the Netherlands. The study encompassed farm visits, farm questionnaires, expert workshops and SARS-CoV-2 RNA and antibody testing of samples from target animal species (bats, birds and free-ranging carnivores). In this study, we show that the open housing system of mink allowed access to birds, bats and most free-ranging carnivores, and that direct and indirect contact with mink was likely after entry, especially for free-ranging carnivores and birds. This allowed SARS-CoV-2 exposure to animals entering the mink farm, and subsequent infection or mechanical carriage by the target animal species. Moreover, mink can escape farms in some cases, and two SARS-CoV-2-positive mink were found outside farm premises. No other SARS-CoV-2-RNA-positive free-ranging animals were detected, suggesting there was no abundant circulation in the species tested during the study period. To investigate previous SARS-CoV-2 infections, SARS-CoV-2 antibody detection using lung extracts of carcasses was set up and validated. One tested beech marten did have SARS-CoV-2 antibodies, but the closest SARS-CoV-2-infected mink farm was outside of its home range, making infection at a mink farm unlikely. Knowing that virus exchange between different species and the formation of animal reservoirs affects SARS-CoV-2 evolution, continued vigilance and monitoring of mink farms and surrounding wildlife remains vital.


Asunto(s)
COVID-19 , Quirópteros , Mustelidae , Animales , Visón , SARS-CoV-2 , COVID-19/epidemiología , COVID-19/veterinaria , Países Bajos/epidemiología , ARN Viral , Granjas
18.
ACS Appl Energy Mater ; 5(6): 6709-6715, 2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35783346

RESUMEN

An efficient substrate-configuration p-i-n metal-halide perovskite solar cell (PSC) is fabricated on a polymer-coated steel substrate. The optimized cell employs a Ti bottom electrode coated with a thin indium tin oxide (ITO) interlayer covered with a self-assembled [2-(9H-carbazol-9-yl)ethyl]phosphonic acid monolayer as a hole-selective contact. A triple-cation perovskite is used as the absorber layer. Thermally evaporated C60 and atomic layer deposited SnO2 layers serve to create an electron-selective contact. The cells use an ITO top electrode with an antireflective MgF2 coating. The optimized cell fabricated on a polymer-coated steel substrate reaches a power conversion efficiency of 16.5%, which approaches the 18.4% efficiency of a p-i-n reference superstrate-configuration cell that uses a similar stack design. Optical simulations suggest that the remaining optical losses are due to the absorption of light by the ITO top electrode, the C60 layer, the Ti bottom electrode, and reflection from the MgF2 coating in almost equal amounts. The major loss is, however, in the fill factor as a result of an increased sheet resistance of the top ITO electrode.

19.
ACS Appl Mater Interfaces ; 14(14): 16497-16504, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35352932

RESUMEN

Interface layers used for electron transport (ETL) and hole transport (HTL) often significantly enhance the performance of organic solar cells (OSCs). Surprisingly, interface engineering for hole extraction has received little attention thus far. By finetuning the chemical structure of carbazole-based self-assembled monolayers with phosphonic acid anchoring groups, varying the length of the alkane linker (2PACz, 3PACz, and 4PACz), these HTLs were found to perform favorably in OSCs. Compared to archetypal PEDOT:PSS, the PACz monolayers exhibit higher optical transmittance and lower resistance and deliver a higher short-circuit current density and fill factor. Power conversion efficiencies of 17.4% have been obtained with PM6:BTP-eC9 as the active layer, which was distinctively higher than the 16.2% obtained with PEDOT:PSS. Of the three PACz derivatives, the new 3PACz consistently outperforms the other two monolayer HTLs in OSCs with different state-of-the-art nonfullerene acceptors. Considering its facile synthesis, convenient processing, and improved performance, we consider that 3PACz is a promising interface layer for widespread use in OSCs.

20.
Nat Commun ; 13(1): 349, 2022 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039493

RESUMEN

Defects in perovskite solar cells are known to affect the performance, but their precise nature, location, and role remain to be firmly established. Here, we present highly sensitive measurements of the sub-bandgap photocurrent to investigate defect states in perovskite solar cells. At least two defect states can be identified in p-i-n perovskite solar cells that employ a polytriarylamine hole transport layer and a fullerene electron transport layer. By comparing devices with opaque and semi-transparent back contacts, we demonstrate the large effect of optical interference on the magnitude and peak position in the sub-bandgap external quantum efficiency (EQE) in perovskite solar cells. Optical simulations reveal that defects localized near the interfaces are responsible for the measured photocurrents. Using optical spacers of different lengths and a mirror on top of a semi-transparent device, allows for the precise manipulation of the optical interference. By comparing experimental and simulated EQE spectra, we show that sub-bandgap defects in p-i-n devices are located near the perovskite-fullerene interface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...