Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nature ; 626(8001): 1108-1115, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38326622

RESUMEN

Psychosocial stress has profound effects on the body, including the immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3, the underlying mechanisms are not well understood. Here we show that expression of a circulating myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is increased in the serum of humans with MDD as well as in stress-susceptible mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), as well as altered social behaviour. Using a combination of mass cytometry and single-cell RNA sequencing, we performed high-dimensional phenotyping of immune cells in circulation and in the brain and demonstrate that peripheral monocytes are strongly affected by stress. In stress-susceptible mice, both circulating monocytes and monocytes that traffic to the brain showed increased Mmp8 expression following chronic social defeat stress. We further demonstrate that circulating MMP8 directly infiltrates the NAc parenchyma and controls the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.


Asunto(s)
Trastorno Depresivo Mayor , Metaloproteinasa 8 de la Matriz , Monocitos , Estrés Psicológico , Animales , Humanos , Ratones , Trastorno Depresivo Mayor/sangre , Trastorno Depresivo Mayor/enzimología , Trastorno Depresivo Mayor/genética , Trastorno Depresivo Mayor/metabolismo , Espacio Extracelular/metabolismo , Metaloproteinasa 8 de la Matriz/sangre , Metaloproteinasa 8 de la Matriz/deficiencia , Metaloproteinasa 8 de la Matriz/genética , Metaloproteinasa 8 de la Matriz/metabolismo , Ratones Endogámicos C57BL , Monocitos/química , Monocitos/inmunología , Monocitos/metabolismo , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patología , Tejido Parenquimatoso/metabolismo , Análisis de Expresión Génica de una Sola Célula , Conducta Social , Aislamiento Social , Estrés Psicológico/sangre , Estrés Psicológico/genética , Estrés Psicológico/inmunología , Estrés Psicológico/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256223

RESUMEN

Blast-induced neurotrauma has received much attention over the past decade. Vascular injury occurs early following blast exposure. Indeed, in animal models that approximate human mild traumatic brain injury or subclinical blast exposure, vascular pathology can occur in the presence of a normal neuropil, suggesting that the vasculature is particularly vulnerable. Brain endothelial cells and their supporting glial and neuronal elements constitute a neurovascular unit (NVU). Blast injury disrupts gliovascular and neurovascular connections in addition to damaging endothelial cells, basal laminae, smooth muscle cells, and pericytes as well as causing extracellular matrix reorganization. Perivascular pathology becomes associated with phospho-tau accumulation and chronic perivascular inflammation. Disruption of the NVU should impact activity-dependent regulation of cerebral blood flow, blood-brain barrier permeability, and glymphatic flow. Here, we review work in an animal model of low-level blast injury that we have been studying for over a decade. We review work supporting the NVU as a locus of low-level blast injury. We integrate our findings with those from other laboratories studying similar models that collectively suggest that damage to astrocytes and other perivascular cells as well as chronic immune activation play a role in the persistent neurobehavioral changes that follow blast injury.


Asunto(s)
Traumatismos por Explosión , Conmoción Encefálica , Lesiones del Sistema Vascular , Animales , Humanos , Células Endoteliales , Astrocitos , Inflamación
3.
Neuron ; 111(20): 3307-3320.e5, 2023 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-37857091

RESUMEN

Basolateral amygdala (BLA) projects widely across the macaque frontal cortex, and amygdalo-frontal projections are critical for appropriate emotional responding and decision making. While it is appreciated that single BLA neurons branch and project to multiple areas in frontal cortex, the organization and frequency of this branching has yet to be fully characterized. Here, we determined the projection patterns of more than 3,000 macaque BLA neurons. We found that one-third of BLA neurons had two or more distinct projection targets in frontal cortex and subcortical structures. The patterns of single BLA neuron projections to multiple areas were organized into repeating motifs that targeted distinct sets of areas in medial and ventral frontal cortex, indicative of separable BLA networks. Our findings begin to reveal the rich structure of single-neuron connections in the non-human primate brain, providing a neuroanatomical basis for the role of BLA in coordinating brain-wide responses to valent stimuli.


Asunto(s)
Complejo Nuclear Basolateral , Animales , Complejo Nuclear Basolateral/fisiología , Macaca , Vías Nerviosas/fisiología , Lóbulo Frontal , Neuronas/fisiología , Corteza Prefrontal/fisiología
4.
Acta Neuropathol Commun ; 11(1): 81, 2023 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-37173747

RESUMEN

In the course of military operations in modern war theaters, blast exposures are associated with the development of a variety of mental health disorders associated with a post-traumatic stress disorder-related features, including anxiety, impulsivity, insomnia, suicidality, depression, and cognitive decline. Several lines of evidence indicate that acute and chronic cerebral vascular alterations are involved in the development of these blast-induced neuropsychiatric changes. In the present study, we investigated late occurring neuropathological events associated with cerebrovascular alterations in a rat model of repetitive low-level blast-exposures (3 × 74.5 kPa). The observed events included hippocampal hypoperfusion associated with late-onset inflammation, vascular extracellular matrix degeneration, synaptic structural changes and neuronal loss. We also demonstrate that arteriovenous malformations in exposed animals are a direct consequence of blast-induced tissue tears. Overall, our results further identify the cerebral vasculature as a main target for blast-induced damage and support the urgent need to develop early therapeutic approaches for the prevention of blast-induced late-onset neurovascular degenerative processes.


Asunto(s)
Malformaciones Arteriovenosas , Traumatismos por Explosión , Ratas , Masculino , Animales , Remodelación Vascular , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/patología , Encéfalo/patología , Inflamación/patología , Malformaciones Arteriovenosas/complicaciones , Malformaciones Arteriovenosas/patología , Modelos Animales de Enfermedad
5.
Res Sq ; 2023 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-36778505

RESUMEN

Psychosocial stress has profound effects on the body, including the peripheral immune system and the brain1,2. Although a large number of pre-clinical and clinical studies have linked peripheral immune system alterations to stress-related disorders such as major depressive disorder (MDD)3,4,5, the underlying mechanisms are not well understood. Here we show that a peripheral myeloid cell-specific proteinase, matrix metalloproteinase 8 (MMP8), is elevated in serum of subjects with MDD as well as in stress-susceptible (SUS) mice following chronic social defeat stress (CSDS). In mice, we show that this increase leads to alterations in extracellular space and neurophysiological changes in the nucleus accumbens (NAc), thereby altering social behaviour. Using a combination of mass cytometry and single-cell RNA-sequencing, we performed high-dimensional phenotyping of immune cells in circulation and brain and demonstrate that peripheral monocytes are strongly affected by stress. Both peripheral and brain-infiltrating monocytes of SUS mice showed increased Mmp8 expression following CSDS. We further demonstrate that peripheral MMP8 directly infiltrates the NAc parenchyma to control the ultrastructure of the extracellular space. Depleting MMP8 prevented stress-induced social avoidance behaviour and alterations in NAc neurophysiology and extracellular space. Collectively, these data establish a novel mechanism by which peripheral immune factors can affect central nervous system function and behaviour in the context of stress. Targeting specific peripheral immune cell-derived matrix metalloproteinases could constitute novel therapeutic targets for stress-related neuropsychiatric disorders.

6.
Neurobiol Aging ; 123: 49-62, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36638681

RESUMEN

The investigation of neurobiological and neuropathological changes that affect synaptic integrity and function with aging is key to understanding why the aging brain is vulnerable to Alzheimer's disease. We investigated the cellular characteristics in the cerebral cortex of behaviorally characterized marmosets, based on their trajectories of cognitive learning as they transitioned to old age. We found increased astrogliosis, increased phagocytic activity of microglial cells and differences in resting and reactive microglial cell phenotypes in cognitively impaired compared to nonimpaired marmosets. Differences in amyloid beta deposition were not related to cognitive trajectory. However, we found age-related changes in density and morphology of dendritic spines in pyramidal neurons of layer 3 in the dorsolateral prefrontal cortex and the CA1 field of the hippocampus between cohorts. Overall, our data suggest that an accelerated aging process, accompanied by neurodegeneration, that takes place in cognitively impaired aged marmosets and affects the plasticity of dendritic spines in cortical areas involved in cognition and points to mechanisms of neuronal vulnerability to aging.


Asunto(s)
Péptidos beta-Amiloides , Callithrix , Animales , Encéfalo , Neuronas , Envejecimiento/fisiología
7.
bioRxiv ; 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36711708

RESUMEN

The basolateral amygdala (BLA) projects widely across the macaque frontal cortex1-4, and amygdalo-frontal projections are critical for optimal emotional responding5 and decision-making6. Yet, little is known about the single-neuron architecture of these projections: namely, whether single BLA neurons project to multiple parts of the frontal cortex. Here, we use MAPseq7 to determine the projection patterns of over 3000 macaque BLA neurons. We found that one-third of BLA neurons have two or more distinct targets in parts of frontal cortex and of subcortical structures. Further, we reveal non-random structure within these branching patterns such that neurons with four targets are more frequently observed than those with two or three, indicative of widespread networks. Consequently, these multi-target single neurons form distinct networks within medial and ventral frontal cortex consistent with their known functions in regulating mood and decision-making. Additionally, we show that branching patterns of single neurons shape functional networks in the brain as assessed by fMRI-based functional connectivity. These results provide a neuroanatomical basis for the role of the BLA in coordinating brain-wide responses to valent stimuli8 and highlight the importance of high-resolution neuroanatomical data for understanding functional networks in the brain.

8.
iScience ; 25(12): 105685, 2022 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-36567715

RESUMEN

Repeated or prolonged early life exposure to anesthesia is neurotoxic in animals and associated with neurocognitive impairment in later life in humans. We used electron microscopy with unbiased stereological sampling to assess synaptic ultrastructure in dorsolateral prefrontal cortex (dlPFC) and hippocampal CA1 of female and male rhesus monkeys, four years after three 4-h exposures to sevoflurane during the first five postnatal weeks. This allowed us to ascertain long-term consequences of anesthesia exposure without confounding effects of surgery or illness. Synapse areas were reduced in the largest synapses in CA1 and dlPFC, predominantly in perforated spinous synapses in CA1 and nonperforated spinous synapses in dlPFC. Mitochondrial morphology and localization changed subtly in both areas. Synapse areas in CA1 correlated with response to a mild social stressor. Thus, exposure to anesthesia in infancy can cause long-term ultrastructural changes in primates, which may be substrates for long-term alterations in synaptic transmission and behavioral deficits.

9.
Neuropsychopharmacology ; 47(3): 788-799, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34799681

RESUMEN

Stressful life events are ubiquitous and well-known to negatively impact mental health. However, in both humans and animal models, there is large individual variability in how individuals respond to stress, with some but not all experiencing long-term adverse consequences. While there is growing understanding of the neurobiological underpinnings of the stress response, much less is known about how neurocircuits shaped by lifetime experiences are activated during an initial stressor and contribute to this selective vulnerability versus resilience. We developed a model of acute social defeat stress (ASDS) that allows classification of male mice into "susceptible" (socially avoidant) versus "resilient" (expressing control-level social approach) one hour after exposure to six minutes of social stress. Using circuit tracing and high-resolution confocal imaging, we explored differences in activation and dendritic spine density and morphology in the prelimbic cortex to basolateral amygdala (PL→BLA) circuit in resilient versus susceptible mice. Susceptible mice had greater PL→BLA recruitment during ASDS and activated PL→BLA neurons from susceptible mice had more and larger mushroom spines compared to resilient mice. We hypothesized identified structure/function differences indicate an overactive PL→BLA response in susceptible mice and used an intersectional chemogenetic approach to inhibit the PL→BLA circuit during or prior to ASDS. We found in both cases that this blocked ASDS-induced social avoidance. Overall, we show PL→BLA structure/function differences mediate divergent behavioral responses to ASDS in male mice. These results support PL→BLA circuit overactivity during stress as a biomarker of trait vulnerability and potential target for prevention of stress-induced psychopathology.


Asunto(s)
Complejo Nuclear Basolateral , Amígdala del Cerebelo/fisiología , Animales , Masculino , Ratones , Neuronas/fisiología , Corteza Prefrontal/fisiología , Derrota Social , Estrés Psicológico
10.
Acta Neuropathol Commun ; 9(1): 167, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654480

RESUMEN

Cerebral vascular injury as a consequence of blast-induced traumatic brain injury is primarily the result of blast wave-induced mechanical disruptions within the neurovascular unit. In rodent models of blast-induced traumatic brain injury, chronic vascular degenerative processes are associated with the development of an age-dependent post-traumatic stress disorder-like phenotype. To investigate the evolution of blast-induced chronic vascular degenerative changes, Long-Evans rats were blast-exposed (3 × 74.5 kPa) and their brains analyzed at different times post-exposure by X-ray microcomputed tomography, immunohistochemistry and electron microscopy. On microcomputed tomography scans, regional cerebral vascular attenuation or occlusion was observed as early as 48 h post-blast, and cerebral vascular disorganization was visible at 6 weeks and more accentuated at 13 months post-blast. Progression of the late-onset pathology was characterized by detachment of the endothelial and smooth muscle cellular elements from the neuropil due to degeneration and loss of arteriolar perivascular astrocytes. Development of this pathology was associated with vascular remodeling and neuroinflammation as increased levels of matrix metalloproteinases (MMP-2 and MMP-9), collagen type IV loss, and microglial activation were observed in the affected vasculature. Blast-induced chronic alterations within the neurovascular unit should affect cerebral blood circulation, glymphatic flow and intramural periarterial drainage, all of which may contribute to development of the blast-induced behavioral phenotype. Our results also identify astrocytic degeneration as a potential target for the development of therapies to treat blast-induced brain injury.


Asunto(s)
Astrocitos/patología , Traumatismos por Explosión/patología , Barrera Hematoencefálica/patología , Lesiones Traumáticas del Encéfalo/patología , Enfermedades Neuroinflamatorias/patología , Animales , Traumatismos por Explosión/complicaciones , Lesiones Traumáticas del Encéfalo/etiología , Células Endoteliales/patología , Enfermedades Neuroinflamatorias/etiología , Pericitos/patología , Ratas , Ratas Long-Evans , Remodelación Vascular/fisiología
11.
Am J Primatol ; 83(11): e23271, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34018622

RESUMEN

Age-related cognitive decline has been extensively studied in humans, but the majority of research designs are cross-sectional and compare across younger and older adults. Longitudinal studies are necessary to capture variability in cognitive aging trajectories but are difficult to carry out in humans and long-lived nonhuman primates. Marmosets are an ideal primate model for neurocognitive aging as their naturally short lifespan facilitates longitudinal designs. In a longitudinal study of marmosets tested on reversal learning starting in middle-age, we found that, on average, the group of marmosets declined in cognitive performance around 8 years of age. However, we found highly variable patterns of cognitive aging trajectories across individuals. Preliminary analyses of brain tissues from this cohort also show highly variable degrees of neuropathology. Future work will tie together behavioral trajectories with brain pathology and provide a window into the factors that predict age-related cognitive decline.


Asunto(s)
Envejecimiento , Callithrix , Animales , Estudios Transversales , Longevidad , Estudios Longitudinales
12.
Alzheimers Dement ; 17(6): 933-945, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33734581

RESUMEN

INTRODUCTION: Alzheimer's disease (AD) is a devastating condition with no effective treatments, with promising findings in rodents failing to translate into successful therapies for patients. METHODS: Targeting the vulnerable entorhinal cortex (ERC), rhesus monkeys received two injections of an adeno-associated virus expressing a double tau mutation (AAV-P301L/S320F) in the left hemisphere, and control AAV-green fluorescent protein in the right ERC. Noninjected aged-matched monkeys served as additional controls. RESULTS: Within 3 months we observed evidence of misfolded tau propagation, similar to what is hypothesized to occur in humans. Viral delivery of human 4R-tau also coaptates monkey 3R-tau via permissive templating. Tau spreading is accompanied by robust neuroinflammatory response driven by TREM2+ microglia, with biomarkers of inflammation and neuronal loss in the cerebrospinal fluid and plasma. DISCUSSION: These results highlight the initial stages of tau seeding and propagation in a primate model, a more powerful translational approach for the development of new therapies for AD.


Asunto(s)
Enfermedad de Alzheimer/patología , Modelos Animales de Enfermedad , Macaca mulatta/metabolismo , Proteínas tau/líquido cefalorraquídeo , Anciano , Péptidos beta-Amiloides/líquido cefalorraquídeo , Animales , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Corteza Entorrinal/patología , Femenino , Humanos , Microglía/metabolismo , Mutación/genética
13.
Mol Autism ; 11(1): 89, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203459

RESUMEN

BACKGROUND: Deletion or mutations of SHANK3 lead to Phelan-McDermid syndrome and monogenic forms of autism spectrum disorder (ASD). SHANK3 encodes its eponymous scaffolding protein at excitatory glutamatergic synapses. Altered morphology of dendrites and spines in the hippocampus, cerebellum, and striatum have been associated with behavioral impairments in Shank3-deficient animal models. Given the attentional deficit in these animals, our study explored whether deficiency of Shank3 in a rat model alters neuron morphology and synaptic ultrastructure in the medial prefrontal cortex (mPFC). METHODS: We assessed dendrite and spine morphology and spine density in mPFC layer III neurons in Shank3-homozygous knockout (Shank3-KO), heterozygous (Shank3-Het), and wild-type (WT) rats. We used electron microscopy to determine the density of asymmetric synapses in mPFC layer III excitatory neurons in these rats. We measured postsynaptic density (PSD) length, PSD area, and head diameter (HD) of spines at these synapses. RESULTS: Basal dendritic morphology was similar among the three genotypes. Spine density and morphology were comparable, but more thin and mushroom spines had larger head volumes in Shank3-Het compared to WT and Shank3-KO. All three groups had comparable synapse density and PSD length. Spine HD of total and non-perforated synapses in Shank3-Het rats, but not Shank3-KO rats, was significantly larger than in WT rats. The total and non-perforated PSD area was significantly larger in Shank3-Het rats compared to Shank3-KO rats. These findings represent preliminary evidence for synaptic ultrastructural alterations in the mPFC of rats that lack one copy of Shank3 and mimic the heterozygous loss of SHANK3 in Phelan-McDermid syndrome. LIMITATIONS: The Shank3 deletion in the rat model we used does not affect all isoforms of the protein and would only model the effect of mutations resulting in loss of the N-terminus of the protein. Given the higher prevalence of ASD in males, the ultrastructural study focused only on synaptic structure in male Shank3-deficient rats. CONCLUSIONS: We observed increased HD and PSD area in Shank3-Het rats. These observations suggest the occurrence of altered synaptic ultrastructure in this animal model, further pointing to a key role of defective expression of the Shank3 protein in ASD and Phelan-McDermid syndrome.


Asunto(s)
Proteínas del Tejido Nervioso/deficiencia , Corteza Prefrontal/patología , Sinapsis/ultraestructura , Animales , Espinas Dendríticas/ultraestructura , Femenino , Heterocigoto , Masculino , Proteínas del Tejido Nervioso/metabolismo , Densidad Postsináptica/metabolismo , Ratas
14.
Sci Signal ; 13(654)2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-33082287

RESUMEN

Membrane trafficking processes regulate G protein-coupled receptor (GPCR) activity. Although class A GPCRs are capable of activating G proteins in a monomeric form, they can also potentially assemble into functional GPCR heteromers. Here, we showed that the class A serotonin 5-HT2A receptors (5-HT2ARs) affected the localization and trafficking of class C metabotropic glutamate receptor 2 (mGluR2) through a mechanism that required their assembly as heteromers in mammalian cells. In the absence of agonists, 5-HT2AR was primarily localized within intracellular compartments, and coexpression of 5-HT2AR with mGluR2 increased the intracellular distribution of the otherwise plasma membrane-localized mGluR2. Agonists for either 5-HT2AR or mGluR2 differentially affected trafficking through Rab5-positive endosomes in cells expressing each component of the 5-HT2AR-mGluR2 heterocomplex alone, or together. In addition, overnight pharmacological 5-HT2AR blockade with clozapine, but not with M100907, decreased mGluR2 density through a mechanism that involved heteromerization between 5-HT2AR and mGluR2. Using TAT-tagged peptides and chimeric constructs that are unable to form the interclass 5-HT2AR-mGluR2 complex, we demonstrated that heteromerization was necessary for the 5-HT2AR-dependent effects on mGluR2 subcellular distribution. The expression of 5-HT2AR also augmented intracellular localization of mGluR2 in mouse frontal cortex pyramidal neurons. Together, our data suggest that GPCR heteromerization may itself represent a mechanism of receptor trafficking and sorting.


Asunto(s)
Membrana Celular/metabolismo , Receptor de Serotonina 5-HT2A/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Transducción de Señal , Aminoácidos/farmacología , Animales , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Clozapina/farmacología , Endosomas/metabolismo , Células HEK293 , Humanos , Ratones de la Cepa 129 , Ratones Noqueados , Microscopía Confocal , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Multimerización de Proteína , Transporte de Proteínas/efectos de los fármacos , Receptor de Serotonina 5-HT2A/química , Receptor de Serotonina 5-HT2A/genética , Receptores de Glutamato Metabotrópico/química , Receptores de Glutamato Metabotrópico/genética , Antagonistas de la Serotonina/farmacología
15.
Proc Natl Acad Sci U S A ; 116(52): 26239-26246, 2019 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-31871145

RESUMEN

As the average age of the population continues to rise, the number of individuals affected with age-related cognitive decline and Alzheimer's disease (AD) has increased and is projected to cost more than $290 billion in the United States in 2019. Despite significant investment in research over the last decades, there is no effective treatment to prevent or delay AD progression. There is a translational gap in AD research, with promising drugs based on work in rodent models failing in clinical trials. Aging is the leading risk factor for developing AD and understanding neurobiological changes that affect synaptic integrity with aging will help clarify why the aged brain is vulnerable to AD. We describe here the development of a rhesus monkey model of AD using soluble oligomers of the amyloid beta (Aß) peptide (AßOs). AßOs infused into the monkey brain target a specific population of spines in the prefrontal cortex, induce neuroinflammation, and increase AD biomarkers in the cerebrospinal fluid to similar levels observed in patients with AD. Importantly, AßOs lead to similar dendritic spine loss to that observed in normal aging in monkeys, but so far without detection of amyloid plaques or tau pathology. Understanding the basis of synaptic impairment is the most effective route to early intervention and prevention or postponement of age-related cognitive decline and transition to AD. These initial findings support the use of monkeys as a platform to understand age-related vulnerabilities of the primate brain and may help develop effective disease-modifying therapies for treatment of AD and related dementias.

16.
Acta Neuropathol Commun ; 7(1): 6, 2019 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-30626447

RESUMEN

Much concern exists over the role of blast-induced traumatic brain injury (TBI) in the chronic cognitive and mental health problems that develop in veterans and active duty military personnel. The brain vasculature is particularly sensitive to blast injury. The aim of this study was to characterize the evolving molecular and histologic alterations in the neurovascular unit induced by three repetitive low-energy blast exposures (3 × 74.5 kPa) in a rat model mimicking human mild TBI or subclinical blast exposure. High-resolution two-dimensional differential gel electrophoresis (2D-DIGE) and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry of purified brain vascular fractions from blast-exposed animals 6 weeks post-exposure showed decreased levels of vascular-associated glial fibrillary acidic protein (GFAP) and several neuronal intermediate filament proteins (α-internexin and the low, middle, and high molecular weight neurofilament subunits). Loss of these proteins suggested that blast exposure disrupts gliovascular and neurovascular interactions. Electron microscopy confirmed blast-induced effects on perivascular astrocytes including swelling and degeneration of astrocytic endfeet in the brain cortical vasculature. Because the astrocyte is a major sensor of neuronal activity and regulator of cerebral blood flow, structural disruption of gliovascular integrity within the neurovascular unit should impair cerebral autoregulation. Disrupted neurovascular connections to pial and parenchymal blood vessels might also affect brain circulation. Blast exposures also induced structural and functional alterations in the arterial smooth muscle layer. Interestingly, by 8 months after blast exposure, GFAP and neuronal intermediate filament expression had recovered to control levels in isolated brain vascular fractions. However, despite this recovery, a widespread vascular pathology was still apparent at 10 months after blast exposure histologically and on micro-computed tomography scanning. Thus, low-level blast exposure disrupts gliovascular and neurovascular connections while inducing a chronic vascular pathology.


Asunto(s)
Astrocitos/patología , Conmoción Encefálica/patología , Encéfalo/irrigación sanguínea , Encéfalo/patología , Neuronas/patología , Animales , Astrocitos/metabolismo , Encéfalo/metabolismo , Conmoción Encefálica/metabolismo , Modelos Animales de Enfermedad , Masculino , Neuronas/metabolismo , Ratas Long-Evans
17.
J Comp Neurol ; 527(4): 856-873, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30408169

RESUMEN

Female rhesus monkeys and women are subject to age- and menopause-related deficits in working memory, an executive function mediated by the dorsolateral prefrontal cortex (dlPFC). Long-term cyclic administration of 17ß-estradiol improves working memory, and restores highly plastic axospinous synapses within layer III dlPFC of aged ovariectomized monkeys. In this study, we tested the hypothesis that synaptic distributions of tau protein phosphorylated at serine 214 (pS214-tau) are altered with age or estradiol treatment, and couple to working memory performance. First, ovariectormized young and aged monkeys received vehicle or estradiol treatment, and were tested on the delayed response (DR) test of working memory. Serial section electron microscopic immunocytochemistry was then performed to quantitatively assess the subcellular synaptic distributions of pS214-tau. Overall, the majority of synapses contained pS214-tau immunogold particles, which were predominantly localized to the cytoplasm of axon terminals. pS214-tau was also abundant within synaptic and cytoplasmic domains of dendritic spines. The density of pS214-tau immunogold within the active zone, cytoplasmic, and plasmalemmal domains of axon terminals, and subjacent to the postsynaptic density within the subsynaptic domains of dendritic spines, were each reduced with age. None of the variables examined were directly linked to cognitive status, but a high density of pS214-tau immunogold particles within presynaptic cytoplasmic and plasmalemmal domains, and within postsynaptic subsynaptic and plasmalemmal domains, accompanied high synapse density. Together, these data support a possible physiological, rather than pathological, role for pS214-tau in the modulation of synaptic morphology in monkey dlPFC.


Asunto(s)
Envejecimiento/metabolismo , Espinas Dendríticas/metabolismo , Corteza Prefrontal/metabolismo , Sinapsis/metabolismo , Proteínas tau/metabolismo , Envejecimiento/patología , Animales , Disfunción Cognitiva/metabolismo , Espinas Dendríticas/patología , Femenino , Macaca mulatta , Memoria a Corto Plazo/fisiología , Sinapsis/patología
18.
Neurobiol Aging ; 73: 200-210, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30384123

RESUMEN

Age and estrogens may impact the mobility of N-methyl-D-aspartate receptors (NMDARs) in hippocampal synapses. Here, we used serial section immunogold electron microscopy to examine whether phosphorylated tyrosine 1472 NR2B (pY1472), which is involved in the surface expression of NMDARs, is altered in the dorsal hippocampus of young (3-4 months old) and aged (∼24 months old) ovariectomized rats treated with 17ß-estradiol or vehicle for 2 days. The number of gold particles labeling pY1472 was higher in presynaptic and postsynaptic compartments of aged rats with low estradiol (vehicle-treated) compared to other groups. In terminals, pY1472 levels were elevated in aged rats but reduced by estradiol treatment to levels seen in young rats. Conversely, the mitochondria number was lower in aged females but was restored to young levels by estradiol. In the postsynaptic density and dendritic spines, estradiol reduced pY1472 in young and aged rats. As phosphorylation at Y1472 blocks NR2B endocytosis, reduction of pY1472 by estradiol suggests another mechanism through which estrogen enhances synaptic plasticity by altering localization of NMDAR subunits within synapses.


Asunto(s)
Envejecimiento/genética , Envejecimiento/patología , Región CA1 Hipocampal/metabolismo , Estradiol/farmacología , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Tirosina/metabolismo , Envejecimiento/metabolismo , Animales , Espinas Dendríticas , Femenino , Plasticidad Neuronal/efectos de los fármacos , Ovariectomía , Fosforilación , Ratas Sprague-Dawley
19.
Neuroscience ; 394: 303-315, 2018 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-30482274

RESUMEN

Age- and menopause-related deficits in working memory can be partially restored with estradiol replacement in women and female nonhuman primates. Working memory is a cognitive function reliant on persistent firing of dorsolateral prefrontal cortex (dlPFC) neurons that requires the activation of GluN2B-containing glutamate NMDA receptors. We tested the hypothesis that the distribution of phospho-Tyr1472-GluN2B (pGluN2B), a predominant form of GluN2B seen at the synapse, is sensitive to aging or estradiol treatment and coupled to working memory performance. First, ovariectomized young and aged rhesus monkeys (Macaca mulatta) received long-term cyclic vehicle (V) or estradiol (E) treatment and were tested on the delayed response (DR) test of working memory. Then, serial section electron microscopic immunocytochemistry was performed to quantitatively assess the subcellular distribution of pGluN2B. While the densities of pGluN2B immunogold particles in dlPFC dendritic spines were not different across age or treatment groups, the percentage of gold particles located within the synaptic compartment was significantly lower in aged-E monkeys compared to young-E and aged-V monkeys. On the other hand, the percentage of pGluN2B gold particles in the spine cytoplasm was decreased with E treatment in young, but increased with E in aged monkeys. In aged monkeys, DR average accuracy inversely correlated with the percentage of synaptic pGluN2B, while it positively correlated with the percentage of cytoplasmic pGluN2B. Together, E replacement may promote cognitive health in aged monkeys, in part, by decreasing the relative representation of synaptic pGluN2B and potentially protecting the dlPFC from calcium toxicity.


Asunto(s)
Envejecimiento , Estrógenos/administración & dosificación , Memoria a Corto Plazo/fisiología , Corteza Prefrontal/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , Sinapsis/fisiología , Animales , Espinas Dendríticas/efectos de los fármacos , Espinas Dendríticas/fisiología , Espinas Dendríticas/ultraestructura , Femenino , Macaca mulatta , Memoria a Corto Plazo/efectos de los fármacos , Fosforilación , Densidad Postsináptica/ultraestructura , Corteza Prefrontal/efectos de los fármacos , Corteza Prefrontal/ultraestructura , Receptores de N-Metil-D-Aspartato/ultraestructura , Sinapsis/efectos de los fármacos , Sinapsis/ultraestructura
20.
J Neurosci ; 38(49): 10467-10478, 2018 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-30355632

RESUMEN

Brodmann area 7a of the parietal cortex is active during working memory tasks in humans and nonhuman primates, but the composition and density of dendritic spines in area 7a and their relevance both to working memory and cognitive aging remain unexplored. Aged monkeys have impaired working memory, and we have previously shown that this age-induced cognitive impairment is partially mediated by a loss of thin spines in prefrontal cortex area 46, a critical area for working memory. Because area 46 is reciprocally connected with area 7a of the parietal cortex and 7a mediates visual attention integration, we hypothesized that thin spine density in area 7a would correlate with working memory performance as well. To investigate the synaptic profile of area 7a and its relevance to working memory and cognitive aging, we investigated differences in spine type and density in layer III pyramidal cells of area 7a in young and aged, male and female rhesus macaques (Macaca mulatta) that were cognitively assessed using the delayed response test of working memory. Area 7a shows age-related loss of thin spines, and thin spine density positively correlates with delayed response performance in aged monkeys. In contrast, these cells show no age-related changes in dendritic length or branching. These changes mirror age-related changes in area 46 but are distinct from other neocortical regions, such as V1. These findings support our hypothesis that cognitive aging is driven primarily by synaptic changes, and more specifically by changes in thin spines, in key association areas.SIGNIFICANCE STATEMENT This study advances our understanding of cognitive aging by demonstrating the relevance of area 7a thin spines to working memory performance. This study is the first to look at cognitive aging in the intraparietal sulcus, and also the first to report spine or dendritic measures for area 7a in either young adult or aged nonhuman primates. These results contribute to the hypothesis that thin spines support working memory performance and confirm our prior observation that cognitive aging is driven by synaptic changes rather than changes in dendritic morphology or neuron death. Importantly, these data show that age-related working memory changes are not limited to disruptions of the prefrontal cortex but also include an association region heavily interconnected with prefrontal cortex.


Asunto(s)
Envejecimiento/patología , Espinas Dendríticas/patología , Trastornos de la Memoria/patología , Memoria a Corto Plazo , Lóbulo Parietal/patología , Envejecimiento/fisiología , Animales , Muerte Celular/fisiología , Espinas Dendríticas/fisiología , Femenino , Predicción , Macaca mulatta , Masculino , Memoria a Corto Plazo/fisiología , Lóbulo Parietal/fisiología , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...