Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 124
Filtrar
1.
Front Chem ; 12: 1383620, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39086984

RESUMEN

Oral bacterial biofilms are the main reason for the progression of resistance to antimicrobial agents that may lead to severe conditions, including periodontitis and gingivitis. Essential oil-based nanocomposites can be a promising treatment option. We investigated cardamom, cinnamon, and clove essential oils for their potential in the treatment of oral bacterial infections using in vitro and computational tools. A detailed analysis of the drug-likeness and physicochemical properties of all constituents was performed. Molecular docking studies revealed that the binding free energy of a Carbopol 940 and eugenol complex was -2.0 kcal/mol, of a Carbopol 940-anisaldehyde complex was -1.9 kcal/mol, and a Carbapol 940-eugenol-anisaldehyde complex was -3.4 kcal/mol. Molecular docking was performed against transcriptional regulator genes 2XCT, 1JIJ, 2Q0P, 4M81, and 3QPI. Eugenol cinnamaldehyde and cineol presented strong interaction with targets. The essential oils were analyzed against Staphylococcus aureus and Staphylococcus epidermidis isolated from the oral cavity of diabetic patients. The cinnamon and clove essential oil combination presented significant minimum inhibitory concentrations (MICs) (0.0625/0.0312 mg/mL) against S. epidermidis and S. aureus (0.0156/0.0078 mg/mL). In the anti-quorum sensing activity, the cinnamon and clove oil combination presented moderate inhibition (8 mm) against Chromobacterium voilaceum with substantial violacein inhibition (58% ± 1.2%). Likewise, a significant biofilm inhibition was recorded in the case of S. aureus (82.1% ± 0.21%) and S. epidermidis (84.2% ± 1.3%) in combination. It was concluded that a clove and cinnamon essential oil-based formulation could be employed to prepare a stable nanocomposite, and Carbapol 940 could be used as a compatible biopolymer.

2.
BMC Complement Med Ther ; 24(1): 299, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135016

RESUMEN

BACKGROUND: Peganum harmala L. is used in traditional medicine to treat several health ailments. Hence, the present work aimed to investigate the DPPH free radical scavenging, α-amylase, cytotoxic, and antifibrotic effects of the hydrophilic extract and fixed oil obtained from P. harmala seeds. METHODS: The hydrophilic extract and fixed oil of P. harmala were assessed for their abilities to scavenge DPPH free radicals and inhibit α-amylase using reference bioassays. The cytotoxicity was assessed on several cancer and normal cell lines, including B16F1, Caco-2, COLO205, HeLa, Hep 3B and Hep G2, MCF-7, and HEK-293 T cells. The MTS assay was used to evaluate the antifibrotic capabilities utilizing the human hepatic stellate (LX-2) cell line. RESULTS: P. harmala plant fixed oil has potent DPPH free radical scavenging activity with an IC50 dose of 79.43 ± 0.08 µg/ml. Besides, the hydrophilic extract has a poor anti-α-amylase effect compared with the antidiabetic drug Acarbose, with IC50 doses of 398 ± 0.59 and 25.11 ± 1.22 µg/ml, respectively. In addition, the growth of MCF-7, Hep3B, HepG2, HeLa, COLO205, CaCo2, B16F1, and HeK293t was inhibited by P. harmala hydrophilic extract with IC50 doses of 121.34 ± 1.71, 268.3 ± 0.75, 297.20 ± 1.00, 155.60 ± 1.14, 150.01 ± 0.51, 308.35 ± 0.53, 597.93 ± 1.36, and 5.38 ± 0.99 µg/ml, respectively. In addition, at 1000 µg/ml, 5-Fluorouracil reduced fibrosis cells by 0.089%, while the hydrophilic extract decreased the number of LX-2 cells by 5.81%. CONCLUSION: P. harmala plant-fixed oil exhibits potential antioxidant properties. While the hydrophilic extract showed limited effectiveness as an anti-α-amylase agent and demonstrated notable cytotoxic effects against various tested cancer cell lines. Furthermore, this extract significantly reduces the number of LX-2 fibrotic cells. These findings emphasize the therapeutic potential of these products in managing various health disorders and warrant further investigation into their mechanisms of action and clinical applications.


Asunto(s)
Depuradores de Radicales Libres , Peganum , Extractos Vegetales , alfa-Amilasas , Humanos , Peganum/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , alfa-Amilasas/antagonistas & inhibidores , Depuradores de Radicales Libres/farmacología , Línea Celular Tumoral , Semillas/química
3.
BMC Complement Med Ther ; 24(1): 223, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851735

RESUMEN

BACKGROUND: The historical use of Laurus nobilis L., the plant is native to the Mediterranean region and has been cultivated for its aromatic leaves, which are used as a flavoring agent in cooking and for their potential therapeutic properties. METHODS: The purpose of the current investigation was to characterize the essential oil composition of the fresh L. nobilis leaves from Palestine by using the gas chromatography-mass spectrometry (GC-MS) technique. DPPH (2,2-diphenyl-1-picrylhydrazyl), p-nitrophenyl butyrate, and 3,5-dinitro salicylic acid (DNSA) methods were employed to estimate the antioxidant, antiobesity, and antidiabetic effects of the essential oil. While MTS assay were used to evaluate their antiproliferative activities on panels of cell lines. Moreover, the docking studies were aided by the Prime MM GBSA method for estimating binding affinities. RESULTS: The GC-MS investigation demonstrated that the fresh L. nobilis leaves essential oil has a variety of chemicals, about 31 different biochemicals were identified, and the major compounds were 1,8-cineole (48.54 ± 0.91%), terpinyl acetate (13.46 ± 0.34%), and α-terpinyl (3.84 ± 0.35%). Furthermore, the investigated oil demonstrated broad-spectrum antimicrobial activity against all tested bacterial and candidal strains and significantly inhibited the growth of MCF-7 cancerous cells more than the chemotherapeutic drug Doxorubicin. Furthermore, it contains robust DPPH free radicals, as well as porcine pancreatic α-amylase and lipase enzymes. Using the 1,8-cineole compound as the predominant biomolecule found in the L. nobilis essential oil, molecular docking studies were performed to confirm these observed fabulous results. The molecular docking simulations proposed that these recorded biological activities almost emanated from its high ability to form strong and effective hydrophobic interactions, this led to the getting of optimal fitting and interaction patterns within the binding sites of the applied crystallographic protein targets. CONCLUSION: The results of these experiments showed that the fresh L. nobilis leaves essential oil has outstanding pharmacological capabilities, making this oil a potential source of natural medications.


Asunto(s)
Laurus , Simulación del Acoplamiento Molecular , Aceites Volátiles , Fitoquímicos , Hojas de la Planta , Aceites Volátiles/farmacología , Aceites Volátiles/química , Hojas de la Planta/química , Humanos , Laurus/química , Fitoquímicos/farmacología , Fitoquímicos/química , Antioxidantes/farmacología , Antioxidantes/química , Medio Oriente , Cromatografía de Gases y Espectrometría de Masas , Línea Celular Tumoral
4.
Microsc Res Tech ; 87(9): 2134-2142, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38706231

RESUMEN

This research on Lamiales epidermal anatomy not only provides in-depth understanding of their structural traits but also highlights the significance of uncovering the inherent antimicrobial resilience embedded within these plants. Such insights hold promise for advancing natural product-based approaches in medicine, potentially contributing to the development of novel antimicrobial agents inspired by Lamiales unique biological defense mechanisms. Scanning microscopic tools were utilized to conduct foliar epidermal anatomy of nine species that belong to seven genera and four families within the Lamiales order, Plantaginaceae, Scrophulariaceae, Verbenaceae, and Lamiaceae. This approach aimed to gather both qualitative and quantitative data, facilitating the assessment of taxonomic microanatomical significance. The shape of epidermal cells and their anticlinal walls; number of epidermal cells, stomata, and trichomes; type of stomata and trichomes; length and width of epidermal cells, trichomes, stomatal pore, guard cells, and subsidiary cells; and stomatal index were determined statistically. Most of the species examined were amphistomatous and showed extensive array of trichomes diversity. The exploration of Lamiales epidermal micromorphology and their antimicrobial potential were significant for their implications in multidisciplinary fields. The pharmacological research to utilize sustainable agricultural practices prompts avenues to strengths of Lamiales order for the development of novel antimicrobial solutions and ecological benefits. RESEARCH HIGHLIGHTS: Diverse trichome morphometry reveals a wide array of trichome structures across Lamiales species. Epidermal microscopic architecture variability of epidermal cell shapes and sizes signifies the interspecies variability. Secondary metabolite localization within microanatomical structures elucidates potential hotspots for antimicrobial compound production.


Asunto(s)
Antiinfecciosos , Epidermis de la Planta , Tricomas , Epidermis de la Planta/química , Antiinfecciosos/farmacología , Hojas de la Planta/química , Estomas de Plantas/efectos de los fármacos
5.
Microsc Res Tech ; 87(9): 2204-2211, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38725294

RESUMEN

This study discusses the micro-level structural details of Cichorieae pollen sources elucidated by scanning electron microscopy (SEM) and explains their symmetry and morphometry. The in-depth knowledge from the electron ultrastructure of Asteraceae pollen has provided insights into enhanced pollen morphology, and the antimicrobial significance of species under study presents novel avenues for their natural defense mechanisms in the development of antimicrobial agents. In this research, both quantitative and qualitative features of pollen were examined. The pollen grains are prolate-spheroidal and oblate-spheroidal in shape, characterized by a maximum polar diameter of 55.6-61.0 µm and a maximum equatorial distance of 68.3-74.4 µm. SEM reveals various configurations such as echinate perforate-tectate, psilate, and echino-lophate perforate. The Cichorieae species have significant antimicrobial efficacy and are promising sources for the development of novel antimicrobial drugs with potential implications in pharmaceutical and healthcare industries. SEM analysis of Cichorieae pollens has provided remarkable insights into their unique structures, revealing diverse shapes and surface ornamentations, which can be used for accurate Asteraceae species identification. RESEARCH HIGHLIGHTS: SEM provides unique pollen surface structures and patterns of Chicory pollen grains. Chemical composition of Chicory botanical sources provides valuable information on their potential as antimicrobial agents. SEM imaging reveals specialized fenestrate grain structures of taxonomic importance.


Asunto(s)
Antiinfecciosos , Cichorium intybus , Microscopía Electrónica de Rastreo , Polen , Polen/ultraestructura , Polen/química , Antiinfecciosos/farmacología , Cichorium intybus/química
6.
ACS Biomater Sci Eng ; 10(6): 3833-3841, 2024 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-38747490

RESUMEN

This study explores the realm of personalized medicine by investigating the utilization of 3D-printed dosage forms, specifically focusing on patient-specific enteric capsules designed for the modified release of ketoprofen, serving as a model drug. The research investigates two distinct scenarios: the modification of drug release from 3D-printed capsules crafted from hydroxypropyl methylcellulose phthalate:polyethylene glycol (HPMCP:PEG) and poly(vinyl alcohol) (PVA), tailored for pH sensitivity and delayed release modes, respectively. Additionally, a novel ketoprofen-loaded self-nanoemulsifying drug delivery system (SNEDDS) based on pomegranate seed oil (PSO) was developed, characterized, and employed as a fill material for the capsules. Through the preparation and characterization of the HPMCP:PEG based filament via the hot-melt extrusion method, the study thoroughly investigated its thermal and mechanical properties. Notably, the in vitro drug release analysis unveiled the intricate interplay between ketoprofen release, polymer type, and capsule thickness. Furthermore, the incorporation of ketoprofen into the SNEDDS exhibited an enhancement in its in vitro cylooxygenase-2 (COX-2) inhibitory activity. These findings collectively underscore the potential of 3D printing in shaping tailored drug delivery systems, thereby contributing significantly to the advancement of personalized medicine.


Asunto(s)
Cápsulas , Liberación de Fármacos , Emulsiones , Cetoprofeno , Medicina de Precisión , Impresión Tridimensional , Cetoprofeno/química , Medicina de Precisión/métodos , Humanos , Emulsiones/química , Polietilenglicoles/química , Sistemas de Liberación de Medicamentos/métodos , Preparaciones de Acción Retardada , Metilcelulosa/química , Metilcelulosa/análogos & derivados , Alcohol Polivinílico/química
7.
Biomed Chromatogr ; 38(7): e5869, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38599336

RESUMEN

The increasing demand for honey purification and authentication necessitates the global utilization of advanced processing tools. Common honey processing techniques, such as chromatography, are commonly used to assess the quality and quantity of valuable honey. In this study, 15 honey samples were authenticated using HPLC and GC-MS chromatographic methods to analyze their pollen spectrum. Various monofloral honey samples were collected, including Acacia, Hypoestes, Lavandula, Tamarix, Trifolium, and Ziziphus species, based on accurate identification by apiarists in 2023 from the Kingdom of Saudi Arabia. Honey analysis revealed the extraction of pollen from 20 different honeybee floral species. Pollen identified from honey samples using advanced chromatographic tools revealed dominant vegetation resources: Ziziphus species (23%), Acacia species (25%), Tamarix species (34%), Lavandula species (26%), Hypoestes species (34%), and Trifolium species (31%). This study uses HPLC to extract phenolic compounds, revealing dominant protocatechuic acid (4.71 mg g-1), and GC-MS to analyze organic compounds in honey pollen. Specifically, 2-dodecanone was detected with a retention time of 7.34 min. The utilization of chromatographic tools in assessing honey samples for pollen identification provides a reliable and efficient method for determining their botanical origins, thereby contributing to the quality control and authentication of honey products.


Asunto(s)
Cromatografía de Gases y Espectrometría de Masas , Miel , Polen , Polen/química , Miel/análisis , Cromatografía Líquida de Alta Presión/métodos , Arabia Saudita , Cromatografía de Gases y Espectrometría de Masas/métodos , Abejas , Animales , Fenoles/análisis
8.
Front Pharmacol ; 15: 1351743, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38515857

RESUMEN

Artemisia dracunculus: L. (A. dracunculus) is a popular vegetable and spice cultivated across many Middle Eastern countries. The herb's aqueous extract has significant folkloric medicinal importance for treating various disorders. Hence, the present investigation aimed to investigate A. dracunculus hydrophilic extract phytochemical constituents and pleiotropic biological potentials, as no previous studies have investigated the antilipase and anti-α-amylase effects of the A. dracunculus plant. Total phenol content and phytochemical screening assays were performed utilizing standard analytical methods. While the α-amylase inhibition, free radical-scavenging, antilipase, and cytotoxic activities were determined using dinitrosalicylic acid (DNSA), DPPH, p-nitrophenyl butyrate (PNPB), and MTS assays, respectively. The standard phytochemical analysis of A. dracunculus aqueous extract shows that this extract contains only a phenolic group. The total phenol content was 0.146 ± 0.012 mg GAE/g of the plant dry extract. The A. dracunculus aqueous extract exhibited potent DPPH free radical inhibitory (IC50 dose of 10.71 ± 0.01 µg/mL) and anti-lipase activities (IC50 dose of 60.25 ± 0.33 µg/mL) compared with Trolox (IC50 = 5.7 ± 0.92 µg/mL) and Orlistat (IC50 = 12.3 ± 0.35 µg/mL), respectively. However, it showed a weak anti-α-amylase effect (IC50 value > 1,000 µg/mL) compared with Acarbose (IC50 = 28.18 ± 1.27 µg/mL). A. dracunculus has a cytotoxic effect against the HeLa cancer cell line compared with the chemotherapeutic agent Doxorubicin. The extract has the same percent of inhibition as Doxorubicin (99.9%) at 10 mg/mL. Overall, these results pointed out for the first time the importance of considering A. dracunculus effects as a favorite candidate for preventing and treating metabolic disorders. Also, our results confirm the findings of previous reports on the role of A. dracunculus in the management of cancer and disorders resulting from the accumulation of harmful free radicals. On the contrary, the current study concluded that the antidiabetic role of A. dracunculus could be minimal. Further in-depth investigations are urgently warranted to explore the importance of A. dracunculus in pharmaceutical production.

9.
BMC Complement Med Ther ; 24(1): 94, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365676

RESUMEN

The primary aim of this investigation was to determine the anticancer and antimicrobial properties of essential oils (EOs) extracted from the leaves of Aloysia citriodora Palau, which were procured from four separate locations in Palestine, in addition to analyzing their chemical composition. These areas include Jericho, which has the distinction of being the lowest location on Earth, at 260 m below sea level. The EOs were acquired by hydrodistillation, and their chemical composition was examined utilizing gas chromatography-mass spectrometry (GC-MS). The minimum inhibitory concentration (MIC) of EOs was assessed against six bacterial strains and one fungal species using 96-well microtiter plates. The primary components found in these oils are geranial (26.32-37.22%), neral (18.38-29.00%), and α-curcumene (7.76-16.91%) in three regions. α-Curcumene (26.94%), spathulenol (13.69%), geranial (10.79%), caryophyllene oxide (8.66%), and neral (7.59%) were found to be the most common of the 32 chemical components in the EO from Jericho. The EOs exhibited bactericidal properties, particularly against Staphylococcus aureus, methicillin-resistant Staphylococcus aureus (MRSA), and showed highly effective fungicidal activity. Nevertheless, the antifungal efficacy of the EO was found to surpass its antibacterial activity when administered at lower dosages. The EOs exhibited anticancer activities against melanoma cancer cells, as indicated by their IC50 values, which ranged from 4.65 to 7.96 µg/mL. A. citriodora EO possesses substantial antifungal and anticancer characteristics, rendering it appropriate for utilization in food-related contexts, hence potentially enhancing the sustainability of the food sector.


Asunto(s)
Monoterpenos Acíclicos , Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Aceites Volátiles , Sesquiterpenos , Verbenaceae , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antifúngicos/farmacología , Antifúngicos/química , Palau , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química
10.
BMC Complement Med Ther ; 24(1): 106, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418969

RESUMEN

BACKGROUND: Origanum punonense Danin is one of the old traditional medicinal plants Bedouins utilize in the Dead Sea region to treat a variety of illnesses, those caused by infections. The current study aimed to identify the phytochemical components of O. punonense essential oil (EO) and determine its antiproliferative and antimicrobial effects. METHODS: Gas chromatography and mass spectrometry were employed to detect the phytochemical constituents of O. punonense EO. Broth microdilution assay was utilized to determine the antimicrobial effects against various microbial species, including those causing diabetic foot infections. RESULTS: This study revealed that O. punonense EO contains 44 phytochemical compounds, of which 41 compounds were detectable and amounted to 99.78% of the total oil. The main chemical components of the oil were carvacrol (57.4%), p-cymene (6.66%), carvone (5.35%), pinene (4.9%), and terpinene (2.96%). The antiproliferative activity of different concentrations of O. punonense EO was noted in all of the investigated cell lines, with the best activity at the concentration of 500 µg/mL. The greatest antibacterial activity was against Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Proteus vulgaris, with MIC values of 1.56 µL/mL. In addition, and the O. punonense EO showed strong antifungal activity against Candida albicans with a MIC value of 0.8 µL/mL. In addition, the O. punonense EO showed potent antibacterial activity against all MRSA samples obtained from the diabetic foot with a MIC value of 3.13 µL/mL. The O. punonense EO demonstrated potent activity against Carbapenem-resistant Enterobacterales, Citrobacter freundii, and K. pneumoniae, with MICs value of 6.25 µL/mL. CONCLUSION: The potent antiproliferative and broad antimicrobial activity of O. punonense EO makes it an effective strategy for treating infections, especially in immunocompromised patients with chronic comorbidities such as cancer and diabetes mellitus.


Asunto(s)
Antiinfecciosos , Antineoplásicos , Pie Diabético , Aceites Volátiles , Origanum , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Origanum/química , Árabes , Cromatografía de Gases y Espectrometría de Masas , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antineoplásicos/farmacología , Escherichia coli , Fitoquímicos/farmacología
11.
Sci Rep ; 14(1): 1919, 2024 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-38253703

RESUMEN

The use of traditional herbal remedies has been a common practice for centuries across different cultures to treat various ailments. In Palestine, traditional herbal medicines are widely used, but their efficacy and safety have not been thoroughly investigated. Therefore, the purpose of this study was to assess the biological activity and toxicity of two traditional herbal blends often used to treat obesity in the West Bank region of Palestine. Two herbal blends with a total of eight plants were chosen based on their historic use and availability. The plant aqueous extracts were evaluated for their antioxidant, anti-fibrotic, anti-obesity, anti-diabetic, and cytotoxic activities. The results showed that these blends have potent antifibrotic, antioxidant, and anticancer activities. While their activities on α-amylase and lipase enzymes (main targets) showed moderate activities. Therefore, our results showed that Herbal Blend 2 was more potent than Herbal Blend 1 on all investigated targets. Herbal Blend 2 showed significant activities as an antioxidant, antifibrotic, and anticancer activities with IC50 values of 68.16 ± 2.45, 33.97 ± 1.14, and 52.53 ± 0.78 µg/mL against DPPH, LX-2, and MCF-7 cell lines, respectively. While it is IC50 values on α-amylase and lipase enzymes were 243.73 ± 1.57 and 1358.39 ± 2.04 µg/mL, respectively. However, the use of anti-cancer plants can be challenging due to their cytotoxic effects on the body. We urge individuals to exercise caution when using natural remedies and to seek medical advice before incorporating them into their health regimens. This study provides valuable insight into the potential health benefits of traditional herbal remedies and emphasizes the importance of responsible usage.


Asunto(s)
Antioxidantes , Árabes , Humanos , Antioxidantes/farmacología , Lipasa , Obesidad/tratamiento farmacológico , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , alfa-Amilasas
12.
BMC Complement Med Ther ; 24(1): 27, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195607

RESUMEN

BACKGROUND: Plants have historically been a rich source of medicinal compounds, with many modern pharmaceuticals derived from botanical origins. In contemporary healthcare, there is a resurgence in utilizing botanical substances as recognized medicinal agents. This study delved into understanding the phytochemical makeup and the multifaceted biological activities of an aqueous extract from Cymbopogon citratus (C. citratus). The investigated activities were its effect on AMPA receptors, antioxidant capacity, anti-lipase, anti-α-amylase actions, cytotoxicity, and antimicrobial properties. METHODS: The extract of C. citratus received a comprehensive investigation, which included the study of its phytochemical composition, assessment of its antioxidant and anti-lipase properties, evaluation of its capacity to inhibit α-amylase, analysis of its impact on cell viability, and assessment of its antimicrobial activity. The approaches are used to clarify the complex physiological and biochemical characteristics. RESULTS: The results were compelling; receptor kinetics had a marked impact, notably on the GluA2 subunit. Regarding its medicinal potential, the extract demonstrated potent antioxidant and anti-diabetic activities with IC50 values of 15.13 and 101.14 µg/mL, respectively. Additionally, it displayed significant inhibitory effects on the lipase enzyme and showed cytotoxicity against the Hep3B cancer cell line, with IC50 values of 144.35 and 148.37 µg/mL. In contrast, its effects on the normal LX-2 cell line were minimal, indicating selectivity. CONCLUSION: The aqueous extract of C. citratus shows promising therapeutic properties. The findings advocate for further research into its compounds for potential isolation, purification, and in-depth pharmacological studies, especially in areas like nervous system disorders, diabetes, obesity, and combating oxidative stress.


Asunto(s)
Antiinfecciosos , Cymbopogon , Humanos , Antioxidantes/farmacología , Árabes , Lipasa , Fitoquímicos/farmacología , Antiinfecciosos/farmacología
13.
Plants (Basel) ; 12(22)2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-38005702

RESUMEN

Eucalyptus camaldulensis Dehnh is a tree species that is commonly used for various purposes, including forestry, agroforestry, and conservation. The present investigation was designed to determine the composition of E. camaldulensis leaves essential oil and estimate its free radicals, porcine pancreatic lipase, α-amylase inhibitory, and antimicrobial properties in vitro. The chemical constituents were analyzed using the gas chromatography-mass spectrometry (GC-MS) technique. DPPH (2,2-diphenyl-1-picrylhydrazyl), p-nitrophenyl butyrate, and 3,5-dinitro salicylic acid (DNSA) methods were employed to estimate the antioxidant, antiobesity, and antidiabetic effects of the essential oil. The microdilution assay was employed to assess the antimicrobial efficacy of the substance against a total of seven distinct microbial species. The GC-MS results revealed that E. camaldulensis essential oil contains 52 components that makeup 100% of the entire oil. The main chemical constituents in E. camaldulensis essential oil are p-cymene (38.64%), followed by aromadendrene (29.65%), and 1,8-cineol (6.45%), with monocyclic monoterpene being the most abundant phytochemical group, followed by the sesquiterpene hydrocarbon group, representing 44.27 and 31.46%, respectively. The essential oil showed a weak antioxidant effect and had no antilipase or antiamylase effects. At the same time, the oil showed a strong antimicrobial effect against methicillin-resistant Staphylococcus aureus (MRSA), Staphylococcus aureus, and Proteus vulgaris, which was even more potent than the positive controls, ciprofloxacin and ampicillin, which had MIC doses of 0.2 ± 0.01, 0.2 ± 0.01, and 6.25 ± 0.1 µg/mL, respectively. It also has a strong anti-Candida albicans effect with a MIC of 0.2 ± 0.01 µg/mL. In light of these findings, in vivo studies should be conducted to determine the efficiency of the E. camaldulensis essential oil in treating microbial infections.

14.
Open Life Sci ; 18(1): 20220767, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38027225

RESUMEN

Curcuma longa (turmeric) is a plant that has been extensively utilized in traditional medicine for centuries. Turmeric has a long history of use in both food and traditional medicine for the treatment of ailments such as diarrhea, cancer, flatulence, and dyspepsia. In Palestine, this plant was cultivated for the first time. The objective of this study was to characterize the extract of C. longa and assess its antimutagenic activity against a variety of cancer cells. Gas chromatography-mass spectrometry (GC-MS) and high-performance liquid chromatography (HPLC) methods were employed to identify the constituents of turmeric. The cytotoxic effects of C. longa were evaluated on cancer and normal cell lines using the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium assay. The results revealed the presence of 10 components in turmeric extract as identified by GC-MS. The major constituents comprising 78% of the total constituents were α-zingiberene (27.51%), tumeron (19.44%), ß-sesquiphellandrene (19.40%), and aromatic-tumeron (11.63%). HPLC analysis successfully separated the main constituent, curcumin (1.78%), along with two other curcumin derivatives. The cytotoxicity results demonstrated potent anticancer activity of the C. longa extract against HeLa and LX2 cell lines, with IC50 values of 46.84 ± 2.12 and 29.77 ± 1 µg/mL, respectively. Furthermore, the plant extract at a concentration of 250 µg/mL exhibited over 95% inhibition against all tested cancer cell lines. These findings highlight the promising potential of turmeric as a natural source with powerful anticancer activities. Moreover, the extract may possess other biological activities such as antioxidant and antimicrobial properties, which could be explored in future studies.

15.
Molecules ; 28(19)2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37836713

RESUMEN

Cymbopogon flexuosus is a highly valued botanical species with significant applications in the food and food supplement industries, medicine, and cosmetics. The effects of four extraction techniques, supercritical CO2, microwave-ultrasonic, steam distillation, and hydrodistillation techniques, on the yield, phytochemical constituents, and antifungal activity against nine fungal species of Cymbopogon flexuosus aromatic oil (AO) were explored in this investigation. Gas chromatography connected with a mass spectrometry apparatus was employed for the qualitative and quantitative analyses of the investigated plant AOs. In addition, using the broth microdilution method, minimum inhibitory concentrations (MICs) were calculated for several fungi species. The supercritical CO2 method gave the highest yield of AO (11.62 ± 0.03 (w/w)) followed by the microwave-ultrasonic method (1.55 ± 0.05% (w/w)) and the steam distillation method (1.24 ± 0.04% (w/w)), while the hydrodistillation methods gave the lowest yield (1.17 ± 0.01 (w/w)). In addition, eighteen molecules were specified in the AOs obtained with the supercritical CO2, microwave-ultrasonic, steam distillation, and hydrodistillation techniques, which constituted 99.36, 98.6, 98.21, and 98.31% (v/v) of the total oils, respectively. Additionally, linalyl acetate was the trending molecule in the microwave-ultrasonic and steam distillation methods, representing 24.61 and 24.34% (v/v), respectively, while geranial was the dominant molecule in the AOs extracted with the hydrodistillation and supercritical CO2 extraction techniques (27.01 and 25.6% (v/v), respectively). The antifungal screening results revealed that the tested C. flexuosus AOs have potential antifungal effects against all the screened fungi species. The antifungal effect of the AOs extracted with the steam distillation and microwave-ultrasonic methods was remarkable compared with that of the commercial antifungal drug Fluconazole. However, the AOs extracted with these two methods have a more potent antifungal effect against Candida parapsilosis than that of Fluconazole with MICs of 3.13 ± 0.01, 3.13 ± 0.01, and 6.25 ± 0.91 µg/mL, respectively. The same effects were also observed against Trichophyton rubrum with MICs of 6.25 ± 0.91 µg/mL, respectively. The results of this investigation demonstrated that the steam distillation and microwave-ultrasonic methods are promising processes for the extraction of C. flexuosus AO with a potent antifungal effect. This may be an advantage for the utilization of C. flexuosus AO over some antifungal synthetic agents commonly utilized as medicines, preservatives, food additives, cosmetics, and nutrient supplements.


Asunto(s)
Cymbopogon , Aceites Volátiles , Aceites Volátiles/química , Destilación/métodos , Antifúngicos/farmacología , Antifúngicos/análisis , Vapor , Dióxido de Carbono , Microondas , Fluconazol , Ultrasonido , Cromatografía de Gases y Espectrometría de Masas
16.
Biomolecules ; 13(10)2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37892167

RESUMEN

In this study, we synthesized benzodioxol carboxamide derivatives and investigated their antidiabetic potential. The synthesized compounds (Ia-Ic and IIa-IId) underwent characterization via HRMS, 1H-, 13CAPT-NMR, and MicroED. Their efficacy against α-amylase was assessed in vitro, while MTS assays were employed to gauge cytotoxicity across cancer and normal cell lines. Additionally, the antidiabetic impact of compound IIc was evaluated in vivo using a streptozotocin-induced diabetic mice model. Notably, IIa and IIc displayed potent α-amylase inhibition (IC50 values of 0.85 and 0.68 µM, respectively) while exhibiting a negligible effect on the Hek293t normal cell line (IC50 > 150 µM), suggesting their safety. Compound IId demonstrated significant activity against four cancer cell lines (26-65 µM). In vivo experiments revealed that five doses of IIc substantially reduced mice blood glucose levels from 252.2 mg/dL to 173.8 mg/dL in contrast to the control group. The compelling in vitro anticancer efficacy of IIc and its safety for normal cells underscores the need for further in vivo assessment of this promising compound. This research highlights the potential of benzodioxol derivatives as candidates for the future development of synthetic antidiabetic drugs.


Asunto(s)
Diabetes Mellitus Experimental , Neoplasias , Ratones , Animales , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Células HEK293 , Estreptozocina , alfa-Amilasas
17.
ACS Omega ; 8(32): 29512-29526, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37599929

RESUMEN

The goal of this work was to create and test a new series of thiazole carboxamide derivatives for their cyclooxygenase (COX) suppressor and anticancer effects. The compounds were characterized using 1H, 13C NMR, and HRMS spectrum analysis, and their selectivity toward COX-1 and COX-2 was assessed using an in vitro COX inhibition assay kit. Cytotoxicity was assessed using an MTS assay against a panel of cancer and normal cell lines. The docking studies were aided by the Prime MM-GBSA method for estimating binding affinities. The density functional theory (DFT) analysis was performed to assess compound chemical reactivity, which was calculated by computing the border orbital energy of both HOMO and LUMO orbitals, as well as the HOMO-LUMO energy gap. For ADME-T analysis, the QiKProp module was employed. Furthermore, using human X-ray crystal structures, molecular docking studies were carried out to discover the probable binding patterns of these drugs within both COX-1 and COX-2 isozymes. The results demonstrated that the most effective compound against the COX-1 enzyme was 2b with an IC50 of 0.239 µM. It also showed potent activity against COX-2 with an IC50 value of 0.191 µM and a selectivity ratio of 1.251. The highest selectivity ratio was 2.766 for compound 2a against COX-2 with an IC50 dose of 0.958 µM relating to the celecoxib ratio of 23.8 and its IC50 against COX-2 of 0.002 µM. Compound 2j also showed good selectivity toward COX-2 (1.507) with an IC50 value of 0.957 µM. All compounds showed negligible cytotoxic activity against the evaluated normal cell lines, and the IC50 values were more than 300 µM, except for compound 2b, whose IC50 values were 203.71 ± 1.89 and 116.96 ± 2.05 µM against LX-2 and Hek293t cell lines, respectively. Moreover, compound 2b showed moderate anticancer activity against COLO205 and B16F1 cancer cell lines with IC50 values of 30.79 and 74.15 µM, respectively.

18.
BMC Complement Med Ther ; 23(1): 221, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37403162

RESUMEN

BACKGROUND: Many modern pharmaceutical researchers continue to focus on the discovery and evaluation of natural compounds for possible therapies for obesity, diabetes, infections, cancer, and oxidative stress. Extraction of Ocimum basilicum seed essential oil and evaluation of its antioxidant, anti-obesity, antidiabetic, antibacterial, and cytotoxic activities were the goals of the current study. METHOD: O. basilicum seed essential oil was extracted and evaluated for its anticancer, antimicrobial, antioxidant, anti-obesity, and anti-diabetic properties utilizing standard biomedical assays. RESULTS: O. basilicum seed essential oil showed good anticancer activity against Hep3B (IC50 56.23 ± 1.32 µg/ml) and MCF-7 (80.35 ± 1.17 µg/ml) when compared with the positive control, Doxorubicin. In addition, the essential oil showed potent antibacterial (against Klebsiella pneumoniae, Escherichia coli, Staphylococcus aureus, Proteus mirabilis, and Pseudomonas aeruginosa) and antifungal (against Candida albicans) activities. Moreover, as for the anti-amylase test, IC50 was 74.13 ± 1.1 µg/ml, a potent effect compared with the IC50 of acarbose, which was 28.10 ± 0.7 µg/ml. On the other hand, for the anti-lipase test, the IC50 was 112.20 ± 0.7 µg/ml a moderate effect compared with the IC50 of orlistat, which was 12.30 ± 0.8 µg/ml. Finally, the oil had a potent antioxidant effect with an IC50 of 23.44 ± 0.9 µg/ml compared with trolox (IC50 was 2.7 ± 0.5 µg/ml). CONCLUSION: This study has provided initial data that supports the importance of O. basilcum essential oil in traditional medicine. The extracted oil not only exhibited significant anticancer, antimicrobial, and antioxidant properties but also antidiabetic and anti-obesity effects, which provided a foundation for future research.


Asunto(s)
Antiinfecciosos , Ocimum basilicum , Aceites Volátiles , Antioxidantes/farmacología , Hipoglucemiantes/farmacología , Antiinfecciosos/farmacología , Aceites Volátiles/farmacología , Antibacterianos/farmacología
19.
BMC Chem ; 17(1): 60, 2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37328860

RESUMEN

BACKGROUND: The carbazole skeleton is an important structural motif occurring naturally or synthesized chemically and has antihistaminic, antioxidant, antitumor, antimicrobial, and anti-inflammatory activities. OBJECTIVES: This study aimed to design and synthesize a novel series of carbazole derivatives and evaluate their antiproliferative and antioxidant activities. METHODS: The synthesized compounds were characterized utilizing HRMS, 1H-, and 13CAPT-NMR, and assessed for their anticancer, antifibrotic, and antioxidant effects utilizing reference biomedical procedures. In addition, the AutoDock Vina application was used to perform in-silico docking computations. RESULTS: A series of carbazole derivatives were synthesized and characterized in the current study. Compounds 10 and 11 were found to have a stronger antiproliferative effect than compounds 2-5 against HepG2, HeLa, and MCF7 cancer cell lines with IC50 values of 7.68, 10.09, and 6.44 µM, respectively. Moreover, compound 9 showed potent antiproliferative activity against HeLa cancer cell lines with an IC50 value of 7.59 µM. However, except for compound 5, all of the synthesized compounds showed moderate antiproliferative activities against CaCo-2 with IC50 values in the range of 43.7-187.23 µM. All of these values were compared with the positive control anticancer drug 5-Fluorouracil (5-FU). In addition, compound 9 showed the most potent anti-fibrotic compound, and the cellular viability of LX-2 was found 57.96% at 1 µM concentration in comparison with the positive control 5-FU. Moreover, 4 and 9 compounds showed potent antioxidant activities with IC50 values of 1.05 ± 0.77 and 5.15 ± 1.01 µM, respectively. CONCLUSION: Most of the synthesized carbazole derivatives showed promising antiproliferative, antioxidant, and antifibrotic biological effects, and further in-vivo investigations are needed to approve or disapprove these results.

20.
Front Pharmacol ; 14: 1180262, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37332348

RESUMEN

Background: Arum palaestinum Boiss (AP) is a wild plant in Palestine whose leaves have a long history as food and medicine in Middle Eastern countries. The current study aimed to evaluate the biological characteristics of AP flower extract, including its antimicrobial and coagulation cascade activities and its effects on anticancer molecular pathways. Methods: The antimicrobial activity of the aqueous extract of AP flowers was assessed using a microdilution assay against eight pathogens. The coagulation properties were assessed by prothrombin time (PT), activated partial thromboplastin time (aPTT), and thrombin time (TT) tests using standard hematological methods. The biological effects of AP on hepatocellular carcinoma were measured by assessing the impact of AP on cell cycle, proliferation (CFSE), apoptosis (annexin-v+/PI), and tumorigenicity (αFP and HBsAg), as well as its effects on the PI3K-AKT-mTOR molecular signaling pathway. Results: The antimicrobial screening results revealed that the aqueous extract of AP had potent antibacterial effects against P. vulgaris and E. faecium compared to ampicillin, with MIC values of 6.25, 6.25, and 18 µg/mL, respectively. Moreover, the AP aqueous extract exerted anticoagulant activity, with significant prolonged results in the aPTT and TT tests (25 µg/mL and 50 µg/mL, respectively) and slightly prolonged results in the PT test (50 µg/mL). The anticancer results indicated a delay in the cell cycle through decreased cell proliferation rates following incubation with AP fractions. The effect of the aqueous fraction was most evident in a delay in the S phase. The aqueous and DMSO fractions maintained the cells in the G2-M phase, similar to the DOX, while the flower extract in methanol accelerated the cells in the G2-M phase, suggesting that AF flower extracts may have anti-cancer properties. The aqueous extract of AP 1) reduced secretions of HCC αFP by 1.55-fold and 3.3-fold at the 50 and 100 µg/mL concentrations, respectively (p = 0.0008); 2) decreased phosphorylation in the PI3K-AKT-mTOR signaling pathway (p < 0.05); and 3) shifted cells from necrosis to apoptosis by 50% and 70% at the 50 and 100 µg/mL concentrations, respectively (p < 0.05). Conclusion: The results of this study showed the activities of the bioactive components for the treatment of infectious diseases and blood coagulation disorders, which could also be a potential therapeutic approach for delaying HCC tumorigenicity.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA