Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME J ; 17(10): 1552-1563, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37169871

RESUMEN

It is generally assumed that viruses outnumber cells on Earth by at least tenfold. Virus-to-microbe ratios (VMR) are largely based on counts of fluorescently labelled virus-like particles. However, these exclude intracellular viruses and potentially include false positives (DNA-containing vesicles, gene-transfer agents, unspecifically stained inert particles). Here, we develop a metagenome-based VMR estimate (mVRM) that accounts for DNA viruses across all stages of their replication cycles (virion, intracellular lytic and lysogenic) by using normalised RPKM (reads per kilobase of gene sequence per million of mapped metagenome reads) counts of the major capsid protein (MCP) genes and cellular universal single-copy genes (USCGs) as proxies for virus and cell counts, respectively. After benchmarking this strategy using mock metagenomes with increasing VMR, we inferred mVMR across different biomes. To properly estimate mVMR in aquatic ecosystems, we generated metagenomes from co-occurring cellular and viral fractions (>50 kDa-200 µm size-range) in freshwater, seawater and solar saltern ponds (10 metagenomes, 2 control metaviromes). Viruses outnumbered cells in freshwater by ~13 fold and in plankton from marine and saline waters by ~2-4 fold. However, across an additional set of 121 diverse non-aquatic metagenomes including microbial mats, microbialites, soils, freshwater and marine sediments and metazoan-associated microbiomes, viruses, on average, outnumbered cells by barely two-fold. Although viruses likely are the most diverse biological entities on Earth, their global numbers might be closer to those of cells than previously estimated.


Asunto(s)
Ecosistema , Virus , Animales , Metagenoma , Virus/genética , Virus ADN/genética , Agua de Mar
2.
Environ Microbiol ; 25(7): 1314-1328, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36852823

RESUMEN

Temporal dynamics of Syndiniales Group II were investigated combining 18S rDNA amplicon sequencing and direct microscopy counts (fluorescence in situ hybridization-tyramide signal amplification [FISH-TSA]) during 5 years. The study was undertaken in meso-eutrophic coastal ecosystem, dominated by diatoms, the haptophyte Phaeocystis globosa and exhibiting relatively low dinoflagellate abundance (max. 18.6 × 103 cells L-1 ). Consistent temporal patterns of Syndiniales Group II were observed over consecutive years highlighting the existence of local populations. According to sequencing data, Syndiniales Group II showed increasing abundance and richness in summer and autumn. Dinospores counted by microscopy, were present at low abundances and were punctuated by transient peaks. In summer dinospore highest abundance (559 × 103 L-1 ) and prevalence (38.5%) coincided with the peak abundance of the dinoflagellate Prorocentrum minimum (13 × 103 L-1 ) while in autumn Syndiniales Group II likely had more diversified hosts. Although, several peaks of dinospore and read abundances coincided, there was no consistent relation between them. Ecological assembly processes at a seasonal scale revealed that stochastic processes were the main drivers (80%) of the Group II community assembly, though deterministic processes were noticeable (20%) in June and July. This latter observation may reflect the specific Syndiniales-dinoflagellate interactions in summer.


Asunto(s)
Dinoflagelados , Haptophyta , Parásitos , Animales , Ecosistema , Parásitos/genética , Biodiversidad , Hibridación Fluorescente in Situ , Dinoflagelados/genética , Haptophyta/genética , Estaciones del Año
3.
ISME J ; 15(9): 2509-2522, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33712701

RESUMEN

Phytoplankton is composed of a broad-sized spectrum of phylogenetically diverse microorganisms. Assessing CO2-fixation intra- and inter-group variability is crucial in understanding how the carbon pump functions, as each group of phytoplankton may be characterized by diverse efficiencies in carbon fixation and export to the deep ocean. We measured the CO2-fixation of different groups of phytoplankton at the single-cell level around the naturally iron-fertilized Kerguelen plateau (Southern Ocean), known for intense diatoms blooms suspected to enhance CO2 sequestration. After the bloom, small cells (<20 µm) composed of phylogenetically distant taxa (prymnesiophytes, prasinophytes, and small diatoms) were growing faster (0.37 ± 0.13 and 0.22 ± 0.09 division d-1 on- and off-plateau, respectively) than larger diatoms (0.11 ± 0.14 and 0.09 ± 0.11 division d-1 on- and off-plateau, respectively), which showed heterogeneous growth and a large proportion of inactive cells (19 ± 13%). As a result, small phytoplankton contributed to a large proportion of the CO2 fixation (41-70%). The analysis of pigment vertical distribution indicated that grazing may be an important pathway of small phytoplankton export. Overall, this study highlights the need to further explore the role of small cells in CO2-fixation and export in the Southern Ocean.


Asunto(s)
Diatomeas , Fitoplancton , Carbono/análisis , Dióxido de Carbono , Océanos y Mares
4.
Mol Ecol ; 30(9): 2162-2177, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33639035

RESUMEN

Despite small freshwater ecosystems being biodiversity reservoirs and contributing significantly to greenhouse fluxes, their microbial communities remain largely understudied. Yet, microorganisms intervene in biogeochemical cycling and impact water quality. Because of their small size, these ecosystems are in principle more sensitive to disturbances, seasonal variation and pluri-annual climate change. However, how microbial community composition varies over space and time, and whether archaeal, bacterial and microbial eukaryote communities behave similarly remain unanswered. Here, we aim to unravel the composition and intra/interannual temporal dynamic patterns for archaea, bacteria and microbial eukaryotes in a set of small freshwater ecosystems. We monitored archaeal and bacterial community composition during 24 consecutive months in four ponds and one brook from northwestern France by 16S rRNA gene amplicon sequencing (microbial eukaryotes were previously investigated for the same systems). Unexpectedly for oxic environments, bacterial Candidate Phyla Radiation (CPR) were highly diverse and locally abundant. Our results suggest that microbial community structure is mainly driven by environmental conditions acting over space (ecosystems) and time (seasons). A low proportion of operational taxonomic units (OTUs) (<1%) was shared by the five ecosystems despite their geographical proximity (2-9 km away), making microbial communities almost unique in each ecosystem and highlighting the strong selective influence of local environmental conditions. Marked and similar seasonality patterns were observed for archaea, bacteria and microbial eukaryotes in all ecosystems despite strong turnovers of rare OTUs. Over the 2-year survey, microbial community composition varied despite relatively stable environmental parameters. This suggests that biotic associations play an important role in interannual community assembly.


Asunto(s)
Ecosistema , Microbiota , Archaea/genética , Biodiversidad , Francia , Agua Dulce , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética
5.
Environ Microbiol ; 23(3): 1436-1451, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33270368

RESUMEN

Identifying which abiotic and biotic factors determine microbial community assembly is crucial to understand ecological processes and predict how communities will respond to environmental change. While global surveys aim at addressing this question in the world's oceans, equivalent studies in large freshwater systems are virtually lacking. Being the oldest, deepest and most voluminous freshwater lake on Earth, Lake Baikal offers a unique opportunity to test the effect of horizontal versus vertical gradients in community structure. Here, we characterized the structure of planktonic microbial eukaryotic communities (0.2-30 µm cell size) along a North-South latitudinal gradient (~600 km) from samples collected in coastal and pelagic waters and from surface to the deepest zones (5-1400 m) using an 18S rRNA gene metabarcoding approach. Our results show complex and diverse protist communities dominated by alveolates (ciliates and dinoflagellates), ochrophytes and holomycotan lineages, with cryptophytes, haptophytes, katablepharids and telonemids in moderate abundance and many low-frequency lineages, including several typical marine members, such as diplonemids, syndinians and radiolarians. Depth had a strong significant effect on protist community stratification. By contrast, the effect of the latitudinal gradient was marginal and no significant difference was observed between coastal and surface open water communities. Co-occurrence network analyses showed that epipelagic communities were significantly more interconnected than communities from the dark water column and suggest specific biotic interactions between autotrophic, heterotrophic and parasitic lineages that influence protist community structure. Since climate change is rapidly affecting Siberia and Lake Baikal, our comprehensive protist survey constitutes a useful reference to monitor ongoing community shifts.


Asunto(s)
Dinoflagelados , Microbiota , Plancton , Lagos , Océanos y Mares , Plancton/genética
6.
Protist ; 171(1): 125709, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-32004979

RESUMEN

This study investigated protist community composition and biotic interactions focusing on microplankton at four distinct sites around the Kerguelen Islands (Southern Ocean) after the summer phytoplankton bloom. Protist diversity in different size fractions, sampled with Niskin bottles and plankton nets, was assessed by sequencing of the V4 18S rDNA region. Combining different approaches, i.e. sequencing of different plankton size fractions, and isolation and sequencing of single cells, provided new insights into microbial interactions in protist communities. The communities displayed high variability, including short-term fluctuations in relative abundance of large protists (>35µm) highlighted by the plankton net samples. Size fractionation of protist communities showed high concentrations of free Syndiniales spores but relatively few Syndiniales associated with microplankton, suggesting low parasitic infection in early autumn. Co-variance network analyses and sequencing of individually isolated single cells highlighted the important role of Rhizaria as consumers of a wide range of different diatom taxa. The data also raised the hypothesis that different Syndiniales clades might be directly or indirectly associated with some diatom genera, thus suggesting a potentially wider host range of these parasites than has been previously reported. These associations and the potential impact on carbon fluxes are discussed.


Asunto(s)
Biodiversidad , Interacciones Huésped-Parásitos/fisiología , Plancton/clasificación , Estaciones del Año , Agua de Mar/parasitología , Eucariontes/fisiología , Océanos y Mares , Plancton/genética , Plancton/microbiología , ARN Ribosómico 18S/genética , Agua de Mar/microbiología
7.
ISME J ; 14(1): 245-258, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31624344

RESUMEN

Bacteria colonizing the aerial parts of plants (phyllosphere) are linked to the biology of their host. They impact plant-pathogen interactions and may influence plant reproduction. Past studies have shown differences in composition and structure of the leaf, flower, and host microbiota, but an investigation of the impact of individual taxa on these variations remains to be tested. Such information will help to evaluate disparities and to better understand the biology and evolution of the plant-microbe associations. In the present study, we investigated the community structure, occupancy of host and organ, and the prevalence of phyllosphere bacteria from three host species collected at the same location. Almost all (98%) of bacterial taxa detected in the phyllosphere were not only shared across leaves and flowers, or different plant species but also had a conserved prevalence across sub-environments of the phyllosphere. We also found nonrandom associations of the phylogenetic diversity of phyllosphere bacteria. These results suggest that the phyllosphere microbiota is more conserved than previously acknowledged, and dominated by generalist bacteria adapted to environmental heterogeneity through evolutionary conserved traits.


Asunto(s)
Bacterias/aislamiento & purificación , Plantas/microbiología , Bacterias/clasificación , Flores/microbiología , Especificidad del Huésped , Microbiota , Filogenia , Hojas de la Planta/microbiología
8.
Nat Ecol Evol ; 3(11): 1552-1561, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31666740

RESUMEN

Microbial life has adapted to various individual extreme conditions; yet, organisms simultaneously adapted to very low pH, high salt and high temperature are unknown. We combined environmental 16S/18S ribosomal RNA gene metabarcoding, cultural approaches, fluorescence-activated cell sorting, scanning electron microscopy and chemical analyses to study samples along such unique polyextreme gradients in the Dallol-Danakil area in Ethiopia. We identified two physicochemical barriers to life in the presence of surface liquid water defined by (1) high chaotropicity-low water activity in Mg2+/Ca2+-dominated brines and (2) hyperacidity-salt combinations (pH ~0/NaCl-dominated salt saturation). When detected, life was dominated by highly diverse ultrasmall archaea that were widely distributed across phyla with and without previously known halophilic members. We hypothesize that a high cytoplasmic K+-level was an original archaeal adaptation to hyperthermophily, subsequently exapted during several transitions to extreme halophily. We detect active silica encrustment/fossilization of cells but also abiotic biomorphs of varied chemistry. Our work helps circumscribing habitability and calls for cautionary interpretations of morphological biosignatures on Earth and beyond.


Asunto(s)
Archaea , Bacterias , Filogenia , ARN Ribosómico 16S
9.
PeerJ ; 7: e6247, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30809429

RESUMEN

High-throughput sequencing has given new insights into aquatic fungal community ecology over the last 10 years. Based on 18S ribosomal RNA gene sequences publicly available, we investigated fungal richness and taxonomic composition among 25 lakes and four rivers. We used a single pipeline to process the reads from raw data to the taxonomic affiliation. In addition, we studied, for a subset of lakes, the active fraction of fungi through the 18S rRNA transcripts level. These results revealed a high diversity of fungi that can be captured by 18S rRNA primers. The most OTU-rich groups were Dikarya (47%), represented by putative filamentous fungi more diverse and abundant in freshwater habitats than previous studies have suggested, followed by Cryptomycota (17.6%) and Chytridiomycota (15.4%). The active fraction of the community showed the same dominant groups as those observed at the 18S rRNA genes level. On average 13.25% of the fungal OTUs were active. The small number of OTUs shared among aquatic ecosystems may result from the low abundances of those microorganisms and/or they constitute allochthonous fungi coming from other habitats (e.g., sediment or catchment areas). The richness estimates suggest that fungi have been overlooked and undersampled in freshwater ecosystems, especially rivers, though they play key roles in ecosystem functioning as saprophytes and parasites.

10.
FEMS Microbiol Ecol ; 93(4)2017 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-28334157

RESUMEN

Although they are widespread, diverse and involved in biogeochemical cycles, microbial eukaryotes attract less attention than their prokaryotic counterparts in environmental microbiology. In this study, we used publicly available 18S barcoding data to define biases that may limit such analyses and to gain an overview of the planktonic microbial eukaryotic diversity in freshwater ecosystems. The richness of the microbial eukaryotes was estimated to 100 798 operational taxonomic units (OTUs) delineating 1267 clusters or phylogenetic units (PUs, i.e. monophyletic groups of OTUs that are phylogenetically close). By summing the richness found in aquatic environments, we can predict the microbial eukaryotic richness to be around 200 000-250 000 species. The molecular diversity of protists in freshwater environments is generally higher than that of the morphospecies and cultivated species catalogued in public databases. Amoebozoa, Viridiplantae, Ichthyosporea, and Cryptophyta are the most phylogenetically diverse taxa, and characterisation of these groups is still needed. A network analysis showed that Fungi, Stramenopiles and Viridiplantae play central role in lake ecosystems. Finally, this work provides guidance for compiling metabarcoding data and identifies missing data that should be obtained to increase our knowledge on microbial eukaryote diversity.


Asunto(s)
Eucariontes/clasificación , Plancton/clasificación , Criptófitas/clasificación , Ecosistema , Hongos/clasificación , Lagos/microbiología , Filogenia , Estramenopilos/clasificación
11.
Front Microbiol ; 7: 812, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27303393

RESUMEN

Small and shallow aquatic ecosystems such as ponds and streams constitute a significant proportion of continental surface waters, especially in temperate zones. In comparison with bigger lakes and rivers, they harbor higher biodiversity but they also exhibit reduced buffering capacity face to environmental shifts, such that climate global change can affect them in a more drastic way. For instance, many temperate areas are predicted to undergo droughts with increasing frequency in the near future, which may lead to the temporal desiccation of streams and ponds. In this work, we monitored temporal dynamics of planktonic communities of microbial eukaryotes (cell size range: 0.2-5 µm) in one brook and one pond that experienced recurrent droughts from 1 to 5 consecutive months during a temporal survey carried out monthly for 2 years based on high-throughput 18S rDNA metabarcoding. During drought-induced desiccation events, protist communities present in the remaining dry sediment, though highly diverse, differed radically from their planktonic counterparts. However, after water refill, the aquatic protist assemblages recovered their original structure within a month. This rapid recovery indicates that these eukaryotic communities are resilient to droughts, most likely via the entrance in dormancy. This property is essential for the long-term survival and functional stability of small freshwater ecosystems.

12.
FEMS Microbiol Ecol ; 91(11)2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26472576

RESUMEN

Over the past decade, neutral theory has gained attention and recognition for its capacity to explain bacterial community structure (BCS) in addition to deterministic processes. However, no clear consensus has been drawn so far on their relative importance. In a metacommunity analysis, we explored at the regional and local scale the effects of these processes on the bacterial community assembly within the water column of 49 freshwater lakes. The BCS was assessed using terminal restriction fragment length polymorphism (T-RFLP) of the 16S rRNA genes. At the regional scales, results indicated that the neutral community model well predicted the spatial community structure (R(2) mean = 76%) compared with the deterministic factors - which explained only a small fraction of the BCS total variance (less than 14%). This suggests that the bacterial compartment was notably driven by stochastic processes, through loss and gain of taxa. At the local scale, the bacterial community appeared to be spatially structured by stochastic processes (R(2) mean = 65%) and temporally governed by the water temperature, a deterministic factor, even if some bacterial taxa were driven by neutral dynamics. Therefore, at both regional and local scales the neutral community model appeared to be relevant in explaining the bacterial assemblage structure.


Asunto(s)
Bacterias/clasificación , Lagos/microbiología , Modelos Biológicos , Carga Bacteriana , ADN Bacteriano/genética , Francia , Concentración de Iones de Hidrógeno , Polimorfismo de Longitud del Fragmento de Restricción , ARN Ribosómico 16S/genética
13.
ISME J ; 9(9): 1941-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25853803

RESUMEN

Small eukaryotes have key roles in aquatic ecosystems, influencing their local environment, global biogeochemical cycles and climate. Their impact depends on community structure, which varies along time. However, very few studies take into account temporal variation. This is especially true for small, shallow freshwater systems, which remain largely understudied despite their wide variety, global surface and intense microbial activity. We have monthly followed changes in the community structure of small microbial eukaryotes (0.2-5 µm cell diameter) for 2 years in four ponds and one brook located in North-Western France based on massive 18S rDNA amplicon 454 pyrosequencing. We detected a total of 3742 stringently defined operational taxonomic units (OTUs) encompassing all recognized eukaryotic supergroups and lineages of uncertain affiliation. Although geographically close, protist communities in the five ecosystems were contrasting, with very few shared OTUs, suggesting that environmental selection mainly drives community structure. The temporal dynamics of different high-rank taxa appeared complex and rapid at monthly scales. Despite this, a clear and reproducible seasonality was observed. As expected, low-abundance OTUs dominated the community. Although some of them appeared sporadically or remained at low frequencies during the survey, others occasionally reached relatively high abundances, sometimes recurrently. This shows that at least a fraction of low-abundance eukaryotes constitutes a seed bank. The annual proportion of primary producers, free-living heterotrophs and parasites appeared remarkably constant among the different ecosystems, suggesting underlying trends of ecosystem carrying capacity for these functional groups.


Asunto(s)
Eucariontes/clasificación , Agua Dulce/microbiología , Estaciones del Año , Microbiología del Agua , Biodiversidad , ADN Ribosómico/genética , Ecosistema , Francia , Geografía , Estanques , Análisis de Secuencia de ADN
14.
Environ Microbiol ; 17(10): 3610-27, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25115943

RESUMEN

Although inland water bodies are more heterogeneous and sensitive to environmental variation than oceans, the diversity of small protists in these ecosystems is much less well known. Some molecular surveys of lakes exist, but little information is available from smaller, shallower and often ephemeral freshwater systems, despite their global distribution and ecological importance. We carried out a comparative study based on massive pyrosequencing of amplified 18S rRNA gene fragments of protists in the 0.2-5 µm size range in one brook and four shallow ponds located in the Natural Regional Park of the Chevreuse Valley, France. Our study revealed a wide diversity of small protists, with 812 stringently defined operational taxonomic units (OTUs) belonging to the recognized eukaryotic supergroups (SAR--Stramenopiles, Alveolata, Rhizaria--Archaeplastida, Excavata, Amoebozoa, Opisthokonta) and to groups of unresolved phylogenetic position (Cryptophyta, Haptophyta, Centrohelida, Katablepharida, Telonemida, Apusozoa). Some OTUs represented deep-branching lineages (Cryptomycota, Aphelida, Colpodellida, Tremulida, clade-10 Cercozoa, HAP-1 Haptophyta). We identified several lineages previously thought to be marine including, in addition to MAST-2 and MAST-12, already detected in freshwater, MAST-3 and possibly MAST-6. Protist community structures were different in the five ecosystems. These differences did not correlate with geographical distances, but seemed to be influenced by environmental parameters.


Asunto(s)
Organismos Acuáticos/clasificación , Biodiversidad , Eucariontes/clasificación , Lagos , Alveolados/clasificación , Alveolados/genética , Alveolados/aislamiento & purificación , Organismos Acuáticos/genética , Organismos Acuáticos/aislamiento & purificación , Criptófitas/clasificación , Criptófitas/genética , Criptófitas/aislamiento & purificación , Ecología , Ecosistema , Eucariontes/genética , Eucariontes/aislamiento & purificación , Francia , Hongos/genética , Haptophyta/clasificación , Haptophyta/genética , Haptophyta/aislamiento & purificación , Océanos y Mares , Filogenia , ARN Ribosómico/genética , ARN Ribosómico/aislamiento & purificación , Análisis de Secuencia de ADN , Estramenopilos/clasificación , Estramenopilos/genética , Estramenopilos/aislamiento & purificación
15.
Environ Microbiol Rep ; 7(2): 211-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25345650

RESUMEN

To assess the role of open-ocean ecosystems in global CO2 fixation, we investigated how picophytoplankton, which dominate primary production, responded to episodic increases in nutrient availability. Previous experiments have shown nitrogen alone, or in combination with phosphorus or iron, to be the proximate limiting nutrient(s) for total phytoplankton grown over several days. Much less is known about how nutrient upshift affects picophytoplankton CO2 fixation over the duration of the light period. To address this issue, we performed a series of small volume (8-60 ml) - short term (10-11 h) nutrient addition experiments in different regions of the Atlantic Ocean using NH4 Cl, FeCl3 , K medium, dust and nutrient-rich water from 300 m depth. We found no significant nutrient stimulation of group-specific CO2 fixation rates of two taxonomically and size-distinct groups of plastidic protists. The above was true regardless of the region sampled or nutrient added, suggesting that this is a generic phenomenon. Our findings show that at least in the short term (i.e. daylight period), nutrient availability does not limit CO2 fixation by the smallest plastidic protists, while their taxonomic composition does not determine their response to nutrient addition.


Asunto(s)
Dióxido de Carbono/metabolismo , Fotosíntesis , Agua de Mar/microbiología , Cloruro de Amonio/metabolismo , Océano Atlántico , Cloruros/metabolismo , Medios de Cultivo/química , Compuestos Férricos/metabolismo , Potasio/metabolismo
16.
Environ Microbiol Rep ; 5(2): 322-32, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23584973

RESUMEN

The diversity and ecological relevance of small haptophytes in marine systems is increasingly recognized. Similar investigations in freshwater remain scarce, despite some recent studies showing the existence of divergent haptophyte lineages and indicating that these microalgae can occur at high abundance in lakes. We studied the diversity of haptophytes in a wide variety of marine, salty continental and, most particularly, freshwater environments by amplifying, cloning and sequencing 18S rRNA genes. For this purpose, we designed two sets of primers specific for the two recognized haptophyte classes, Prymnesiophyceae and Pavlovophyceae. We detected pavlovophyte sequences only in freshwater systems as well as several novel prymnesiophyte phylotypes in both freshwater and marine environments. In addition, we retrieved a cluster of sequences (HAP-3) from the Marmara Sea branching deeply in the haptophyte tree with no clear affiliation to either of the two recognized classes. Five of the freshwater prymnesiophyte phylotypes detected formed a divergent monophyletic group (EV) without close described representatives that branched within the Isochrysidales, a group of generally marine and most often calcifying coccolithophorids. The presence of several sequences of freshwater haptophytes scattered among marine taxa in phylogenetic trees confirms the occurrence of several independent haptophyte transitions between marine and freshwater environments.


Asunto(s)
Organismos Acuáticos/clasificación , Organismos Acuáticos/aislamiento & purificación , Ecosistema , Agua Dulce , Haptophyta/clasificación , Haptophyta/aislamiento & purificación , Organismos Acuáticos/genética , Organismos Acuáticos/crecimiento & desarrollo , Biodiversidad , ADN Ribosómico/genética , Agua Dulce/análisis , Haptophyta/genética , Haptophyta/crecimiento & desarrollo , Hidrobiología , Filogenia , ARN Ribosómico 18S/genética , Agua de Mar/análisis
17.
ISME J ; 7(5): 922-36, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23364354

RESUMEN

A central goal in ecology is to understand the factors affecting the temporal dynamics and spatial distribution of microorganisms and the underlying processes causing differences in community structure and composition. However, little is known in this respect for photosynthetic picoeukaryotes (PPEs), algae that are now recognised as major players in marine CO2 fixation. Here, we analysed dot blot hybridisation and cloning-sequencing data, using the plastid-encoded 16S rRNA gene, from seven research cruises that encompassed all four ocean biomes. We provide insights into global abundance, α- and ß-diversity distribution and the environmental factors shaping PPE community structure and composition. At the class level, the most commonly encountered PPEs were Prymnesiophyceae and Chrysophyceae. These taxa displayed complementary distribution patterns, with peak abundances of Prymnesiophyceae and Chrysophyceae in waters of high (25:1) or low (12:1) nitrogen:phosphorus (N:P) ratio, respectively. Significant differences in phylogenetic composition of PPEs were demonstrated for higher taxonomic levels between ocean basins, using Unifrac analyses of clone library sequence data. Differences in composition were generally greater between basins (interbasins) than within a basin (intrabasin). These differences were primarily linked to taxonomic variation in the composition of Prymnesiophyceae and Prasinophyceae whereas Chrysophyceae were phylogenetically similar in all libraries. These data provide better knowledge of PPE community structure across the world ocean and are crucial in assessing their evolution and contribution to CO2 fixation, especially in the context of global climate change.


Asunto(s)
Chrysophyta/clasificación , Chrysophyta/aislamiento & purificación , Haptophyta/clasificación , Haptophyta/aislamiento & purificación , Agua de Mar , Chrysophyta/genética , Chrysophyta/fisiología , Cambio Climático , Genes de ARNr , Haptophyta/genética , Haptophyta/fisiología , Biología Marina , Océanos y Mares , Fotosíntesis , Filogenia , Plastidios/genética , ARN Ribosómico 16S/genética
18.
Environ Microbiol ; 13(4): 975-90, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21219562

RESUMEN

Photosynthetic picoeukaryotes (PPEs) of a size < 3 µm play a crucial role in oceanic primary production. However, little is known of the structure of the PPE community over large spatial scales. Here, we investigated the distribution of various PPE classes along an Atlantic Meridional Transect sampled in boreal autumn 2004 that encompasses a range of ocean provinces (gyres, upwelling, temperate regions), using dot blot hybridization technology targeting plastid 16S rRNA gene amplicons. Two algal classes, Prymnesiophyceae and Chrysophyceae, dominated the PPE community throughout the Atlantic Ocean, over a range of water masses presenting different trophic profiles. However, these classes showed strongly complementary distributions with Chrysophyceae dominating northern temperate waters, the southern gyre and equatorial regions, while prymnesiophytes dominated the northern gyre. Phylogenetic analyses using both plastid and nuclear rRNA genes revealed a high diversity among members of both classes, including sequences contained in lineages with no close cultured counterpart. Other PPE classes were less prevalent along the transect, with members of the Cryptophyceae, Pelagophyceae and Eustigmatophyceae essentially restricted to specific regions. Multivariate statistical analyses revealed strong relationships between the distribution patterns of some of these latter PPE classes and temperature, light intensity and nutrient concentrations. Cryptophyceae, for example, were mostly found in the upwelling region and associated with higher nutrient concentrations. However, the key classes of Prymnesiophyceae and Chrysophyceae were not strongly influenced by the variables measured. Although there appeared to be a positive relationship between Chrysophyceae distribution and light intensity, the complementary distributions of these classes could not be explained by the variables recorded and this requires further explanation.


Asunto(s)
Fotosíntesis , Filogenia , Plancton/aislamiento & purificación , Agua de Mar/microbiología , Océano Atlántico , Núcleo Celular/genética , Chrysophyta/genética , Chrysophyta/aislamiento & purificación , Ecosistema , Biblioteca de Genes , Haptophyta/genética , Haptophyta/aislamiento & purificación , Sondas de Oligonucleótidos , Plancton/genética , Plastidios/genética , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
19.
ISME J ; 4(9): 1180-92, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20393575

RESUMEN

Global estimates indicate the oceans are responsible for approximately half of the carbon dioxide fixed on Earth. Organisms < or =5 microm in size dominate open ocean phytoplankton communities in terms of abundance and CO(2) fixation, with the cyanobacterial genera Prochlorococcus and Synechococcus numerically the most abundant and more extensively studied compared with small eukaryotes. However, the contribution of specific taxonomic groups to marine CO(2) fixation is still poorly known. In this study, we show that among the phytoplankton, small eukaryotes contribute significantly to CO(2) fixation (44%) because of their larger cell volume and thereby higher cell-specific CO(2) fixation rates. Within the eukaryotes, two groups, herein called Euk-A and Euk-B, were distinguished based on their flow cytometric signature. Euk-A, the most abundant group, contained cells 1.8+/-0.1 microm in size while Euk-B was the least abundant but cells were larger (2.8+/-0.2 microm). The Euk-B group comprising prymnesiophytes (73+/-13%) belonging largely to lineages with no close cultured counterparts accounted for up to 38% of the total primary production in the subtropical and tropical northeast Atlantic Ocean, suggesting a key role of this group in oceanic CO(2) fixation.


Asunto(s)
Dióxido de Carbono/metabolismo , Eucariontes/clasificación , Eucariontes/aislamiento & purificación , Fitoplancton/metabolismo , Océano Atlántico , Recuento de Células , Tamaño de la Célula , ADN/química , ADN/genética , ADN/aislamiento & purificación , Eucariontes/citología , Eucariontes/metabolismo , Citometría de Flujo , Hibridación Fluorescente in Situ , Metagenoma , Datos de Secuencia Molecular , Procesos Fototróficos , Prochlorococcus/clasificación , Prochlorococcus/genética , Prochlorococcus/aislamiento & purificación , Prochlorococcus/metabolismo , Análisis de Secuencia de ADN , Synechococcus/clasificación , Synechococcus/genética , Synechococcus/aislamiento & purificación , Synechococcus/metabolismo
20.
PLoS One ; 4(10): e7657, 2009 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-19893617

RESUMEN

BACKGROUND: Photosynthetic picoeukaryotes (PPE) with a cell size less than 3 microm play a critical role in oceanic primary production. In recent years, the composition of marine picoeukaryote communities has been intensively investigated by molecular approaches, but their photosynthetic fraction remains poorly characterized. This is largely because the classical approach that relies on constructing 18S rRNA gene clone libraries from filtered seawater samples using universal eukaryotic primers is heavily biased toward heterotrophs, especially alveolates and stramenopiles, despite the fact that autotrophic cells in general outnumber heterotrophic ones in the euphotic zone. METHODOLOGY/PRINCIPAL FINDINGS: In order to better assess the composition of the eukaryotic picophytoplankton in the South East Pacific Ocean, encompassing the most oligotrophic oceanic regions on earth, we used a novel approach based on flow cytometry sorting followed by construction of 18S rRNA gene clone libraries. This strategy dramatically increased the recovery of sequences from putative autotrophic groups. The composition of the PPE community appeared highly variable both vertically down the water column and horizontally across the South East Pacific Ocean. In the central gyre, uncultivated lineages dominated: a recently discovered clade of Prasinophyceae (IX), clades of marine Chrysophyceae and Haptophyta, the latter division containing a potentially new class besides Prymnesiophyceae and Pavlophyceae. In contrast, on the edge of the gyre and in the coastal Chilean upwelling, groups with cultivated representatives (Prasinophyceae clade VII and Mamiellales) dominated. CONCLUSIONS/SIGNIFICANCE: Our data demonstrate that a very large fraction of the eukaryotic picophytoplankton still escapes cultivation. The use of flow cytometry sorting should prove very useful to better characterize specific plankton populations by molecular approaches such as gene cloning or metagenomics, and also to obtain into culture strains representative of these novel groups.


Asunto(s)
Plancton/clasificación , Plancton/genética , Clonación Molecular , Biología Computacional/métodos , Células Eucariotas/clasificación , Citometría de Flujo/métodos , Biblioteca de Genes , Genes de ARNr , Océano Pacífico , Fotosíntesis , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 18S/química , Agua de Mar , Análisis de Secuencia de ADN , Programas Informáticos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...