Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Mol Pharm ; 21(7): 3151-3162, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38804164

RESUMEN

Although spearmint oil (SMO) has various pharmacological properties, especially for cancer treatment, its low water solubility results in poor bioavailability. This limits its application as a medicine. One possible solution is to the use of SMO in the form of nanoemulsion, which has already been shown to have anticancer effects. However, the mechanism of SMO nanoemulsion formation remains unclear. The objective of this study was to use molecular dynamics (MD) for clarifying the formation of SMO nanoemulsion with triglycerides (trilaurin, tripalmitin, and triolein) and Cremophor RH40 (PCO40). Nanoemulsions with different SMO:triglyceride ratios and triglyceride types were prepared and analyzed for anticancer activity, droplet size, droplet morphology, and stability. Despite switching the type of carrier oil, SMO nanoemulsions retained strong anticancer effects. A ratio of 80SMO:20triglycerides produced the smallest droplets (<100 nm) and exhibited excellent physical stability after a temperature cycling test. MD simulations showed that polyoxyethylenes of PCO40 are located at the water interface, stabilizing the emulsion structure in an egglike layer. Droplet size correlated with triglyceride concentration, which was consistent with the experimental findings. Decreasing triglyceride content, except for the 90SMO:10triglyceride ratio, led to a decrease in droplet sizes. Hydrogen bond analysis identified interactions between triglyceride-PCO40 and carvone-PCO40. Geometry analysis showed PCO40 had an "L-like" shape, which maximizes the hydrophilic interfaces. These findings highlight the value of MD simulations in understanding the formation mechanism of SMO and triglyceride nanoemulsions. In addition, it might also be beneficial to use MD simulations before the experiment to select the potential composition for nanoemulsions, especially essential oil nanoemulsions.


Asunto(s)
Emulsiones , Simulación de Dinámica Molecular , Triglicéridos , Emulsiones/química , Triglicéridos/química , Humanos , Antineoplásicos/química , Antineoplásicos/farmacología , Aceites de Plantas/química , Estabilidad de Medicamentos , Nanopartículas/química , Polietilenglicoles/química , Solubilidad , Tamaño de la Partícula , Línea Celular Tumoral
2.
J Tradit Complement Med ; 13(1): 1-10, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36685072

RESUMEN

Background and aim: Dengue is a potentially deadly tropical infectious disease transmitted by mosquito vector Aedes aegypti with no antiviral drug available to date. Dengue NS5 protein is crucial for viral replication and is the most conserved among all four Dengue serotypes, making it an attractive drug target. Both Ginseng and Notoginseng extracts and isolates have been shown to be effective against various viral infections yet against Dengue Virus is understudied. We aim to identify potential inhibitors against Dengue NS5 Methyl transferase from small molecular compounds found in Ginseng and Notoginseng. Experimental procedure: A molecular docking model of Dengue NS5 Methyl transferase (MTase) domain was tested with decoys and then used to screen 91 small molecular compounds found in Ginseng and Notoginseng followed by Molecular dynamics simulations and the per-residue free energy decompositions based on molecular mechanics/Poisson-Boltzmann (generalised Born) surface area (MM/PB(GB)SA) calculations of the hit. ADME predictions and drug-likeness analyses were discussed to evaluate the viability of the hit as a drug candidate. To confirm our findings, in vitro studies of antiviral activities against RNA and a E protein synthesis and cell toxicity were carried out. Results and conclusion: The virtual screening resulted in Isoquercitrin as a single hit. Further analyses of the Isoquercitrin-MTase complex show that Isoquercitrin can reside within both of the NS5 Methyl Transferase active sites; the AdoMet binding site and the RNA capping site. The Isoquercitrin is safe for consumption and accessible on multikilogram scale. In vitro studies showed that Isoquercitrin can inhibit Dengue virus by reducing viral RNA and viral protein synthesis with low toxicity to cells (CC50 > 20 µM). Our work provides evidence that Isoquercitrin can serve as an inhibitor of Dengue NS5 protein at the Methyl Transferase domain, further supporting its role as an anti-DENV agent.

3.
Biomolecules ; 12(5)2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35625567

RESUMEN

Understanding the interactions between carbon nanoparticles (CNPs) and biological membranes is critically important for applications of CNPs in biomedicine and toxicology. Due to the complexity and diversity of the systems, most molecular simulation studies have focused on the interactions of CNPs and single component bilayers. In this work, we performed coarse-grained molecular dynamic (CGMD) simulations to investigate the behaviors of fullerenes in the presence of multiple lipid components in the plasma membranes with varying fullerene concentrations. Our results reveal that fullerenes can spontaneously penetrate the plasma membrane. Interestingly, fullerenes prefer to locate themselves in the region of the highly unsaturated lipids that are enriched in the inner leaflet of the plasma membrane. This causes fullerene aggregation even at low concentrations. When increasing fullerene concentrations, the fullerene clusters grow, and budding may emerge at the inner leaflet of the plasma membrane. Our findings suggest by tuning the lipid composition, fullerenes can be loaded deeply inside the plasma membrane, which can be useful for designing drug carrier liposomes. Moreover, the mechanisms of how fullerenes perturb multicomponent cell membranes and how they directly enter the cell are proposed. These insights can help to determine fullerene toxicity in living cells.


Asunto(s)
Fulerenos , Membrana Celular , Membrana Dobles de Lípidos , Simulación de Dinámica Molecular
4.
Biophys J ; 120(20): 4525-4535, 2021 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-34478697

RESUMEN

We performed a series of molecular dynamics simulations of cholesterol (Chol) in nonoxidized 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) bilayer and in binary mixtures of PLPC-oxidized-lipid-bilayers with 0-50% Chol concentration and oxidized lipids with hydroperoxide and aldehyde oxidized functional groups. From the 60 unbiased molecular dynamics simulations (total of 161 µs), we found that Chol inhibited pore formation in the aldehyde-containing oxidized lipid bilayers at concentrations greater than 11%. For both pure PLPC bilayer and bilayers with hydroperoxide lipids, no pores were observed at any Chol concentration. Furthermore, increasing cholesterol concentration led to a change of phase state from the liquid-disordered to the liquid-ordered phase. This condensing effect of Chol was observed in all systems. Data analysis shows that the addition of Chol results in an increase in bilayer thickness. Interestingly, we observed Chol flip-flop only in the aldehyde-containing lipid bilayer but neither in the PLPC nor the hydroperoxide bilayers. Umbrella-sampling simulations were performed to calculate the translocation free energies and the Chol flip-flop rates. The results show that Chol's flip-flop rate depends on the lipid bilayer type, and the highest rate are found in aldehyde bilayers. As the main finding, we shown that Chol stabilizes the oxidized lipid bilayer by confining the distribution of the oxidized functional groups.


Asunto(s)
Membrana Dobles de Lípidos , Fosfatidilcolinas , Colesterol , Simulación de Dinámica Molecular , Oxidación-Reducción
5.
Biochim Biophys Acta Biomembr ; 1862(9): 183328, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32343957

RESUMEN

Carbon nanoparticles (CNPs) are attractive materials for a great number of applications but there are serious concerns regarding their influence on health and environment. Here, our focus is on the behavior of fullerenes in lipid bilayers with varying lipid saturations, chain lengths and fullerene concentrations using coarse-grained molecular dynamics (CG-MD) simulations. Our findings show that the lipid saturation level is a key factor in determining how fullerenes behave and where the fullerenes are located inside a lipid bilayer. In saturated and monounsaturated bilayers fullerenes aggregated and formed clusters with some of them showing icosahedral structures. In polyunsaturated lipid bilayers, no such structures were observed: In polyunsaturated lipid bilayers at high fullerene concentrations, connected percolation-like networks of fullerenes spanning the whole lateral area emerged at the bilayer center. In other systems only separate isolated aggregates were observed. The effects of fullerenes on lipid bilayers depend strongly on fullerene aggregation. When fullerenes aggregate, their interactions with the lipid tails change.


Asunto(s)
Fulerenos/química , Membrana Dobles de Lípidos/química , Fosfatidilcolinas/química , Conformación Proteica , Simulación de Dinámica Molecular , Fosfatidilcolinas/genética , Agregado de Proteínas/genética
6.
Proc Natl Acad Sci U S A ; 114(40): E8343-E8351, 2017 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-28923939

RESUMEN

Living organisms perceive and respond to a diverse range of mechanical stimuli. A variety of mechanosensitive ion channels have evolved to facilitate these responses, but the molecular mechanisms underlying their exquisite sensitivity to different forces within the membrane remains unclear. TREK-2 is a mammalian two-pore domain (K2P) K+ channel important for mechanosensation, and recent studies have shown how increased membrane tension favors a more expanded conformation of the channel within the membrane. These channels respond to a complex range of mechanical stimuli, however, and it is uncertain how differences in tension between the inner and outer leaflets of the membrane contribute to this process. To examine this, we have combined computational approaches with functional studies of oppositely oriented single channels within the same lipid bilayer. Our results reveal how the asymmetric structure of TREK-2 allows it to distinguish a broad profile of forces within the membrane, and illustrate the mechanisms that eukaryotic mechanosensitive ion channels may use to detect and fine-tune their responses to different mechanical stimuli.


Asunto(s)
Membrana Celular/fisiología , Activación del Canal Iónico/fisiología , Membrana Dobles de Lípidos/metabolismo , Mecanotransducción Celular/fisiología , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Humanos , Canales de Potasio de Dominio Poro en Tándem/genética
7.
Channels (Austin) ; 11(5): 482-486, 2017 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-28723241

RESUMEN

The TREK-2 (KCNK10) K2P potassium channel can be regulated by variety of polymodal stimuli including pressure. In a recent study, we demonstrated that this mechanosensitive K+ channel responds to changes in membrane tension by undergoing a major structural change from its 'down' state to the more expanded 'up' state conformation. These changes are mostly restricted to the lower part of the protein within the bilayer, but are allosterically coupled to the primary gating mechanism located within the selectivity filter. However, any such structural changes within the filter also have the potential to alter ionic selectivity and there are reports that some K2Ps, including TREK channels, exhibit a dynamic ionic selectivity. In this addendum to our previous study we have therefore examined whether the selectivity of TREK-2 is altered by stretch activation. Our results reveal that the filter remains stable and highly selective for K+ over Na+ during stretch activation, and that permeability to a range of other cations (Rb+, Cs+ and NH4+) also does not change. The asymmetric structural changes that occur during stretch activation therefore allow the channel to respond to changes in membrane tension without a loss of K+ selectivity.


Asunto(s)
Canales de Potasio de Dominio Poro en Tándem/metabolismo , Sitios de Unión , Línea Celular , Humanos , Activación del Canal Iónico , Iones , Simulación de Dinámica Molecular , Unión Proteica , Estrés Mecánico
8.
Structure ; 25(5): 708-718.e2, 2017 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-28392258

RESUMEN

The mechanosensitive two-pore domain (K2P) K+ channels (TREK-1, TREK-2, and TRAAK) are important for mechanical and thermal nociception. However, the mechanisms underlying their gating by membrane stretch remain controversial. Here we use molecular dynamics simulations to examine their behavior in a lipid bilayer. We show that TREK-2 moves from the "down" to "up" conformation in direct response to membrane stretch, and examine the role of the transmembrane pressure profile in this process. Furthermore, we show how state-dependent interactions with lipids affect the movement of TREK-2, and how stretch influences both the inner pore and selectivity filter. Finally, we present functional studies that demonstrate why direct pore block by lipid tails does not represent the principal mechanism of mechanogating. Overall, this study provides a dynamic structural insight into K2P channel mechanosensitivity and illustrates how the structure of a eukaryotic mechanosensitive ion channel responds to changes in forces within the bilayer.


Asunto(s)
Activación del Canal Iónico , Canales de Potasio de Dominio Poro en Tándem/química , Humanos , Membrana Dobles de Lípidos/química , Mecanotransducción Celular , Canales de Potasio de Dominio Poro en Tándem/metabolismo
9.
J Phys Chem Lett ; 6(24): 4884-8, 2015 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-26673194

RESUMEN

The influence of different oxidized lipids on lipid bilayers was investigated with 16 individual 1 µs atomistic molecular dynamics (MD) simulations. Binary mixtures of lipid bilayers of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and its peroxide and aldehyde products were performed at different concentrations. In addition, an asymmetrical short chain lipid, 1-palmitoyl-2-decanoyl-sn-glycero-3-phosphatidylcholine (PDPC), was used to compare the effects of polar/apolar groups in the lipid tail on lipid bilayer. Although water defects occurred with both aldehyde and peroxide lipids, full pore formation was observed only for aldehyde lipids. At medium concentrations the pores were stable. At higher concentrations, however, the pores became unstable and micellation occurred. Data analysis shows that aldehyde lipids' propensity for pore formation is due to their shorter and highly mobile tail. The highly polar peroxide lipids are stabilized by strong hydrogen bonds with interfacial water.


Asunto(s)
Membrana Dobles de Lípidos , Lípidos/química , Micelas , Oxidación-Reducción
10.
J Phys Chem B ; 117(28): 8490-501, 2013 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-23800115

RESUMEN

Polyunsaturated lipids are major targets of free radicals forming oxidized lipids through the lipid peroxidation process. Thus, oxidized lipids play a significant role in cell membrane damage. Using atomistic molecular dynamics (MD) simulations to investigate the dynamics of oxidized lipid bilayers, we examined the effects of NaCl on them. Lipid bilayer systems of 1-palmitoyl-2-linoleoyl-sn-glycero-3-phosphatidylcholine (PLPC) and 4 oxidation products, namely, 9-tc-hydroperoxide linoleic acid, 13-tc-hydroperoxide linoleic acid, 9-oxononanoic acid, and 12-oxo-9-didecadienoic acid in 0, 0.06, and 1 M NaCl solution were studied. These 51 systems, combined over 15 µs of total simulation time, show Cl(-) anions remaining in the water phase and Na(+) cations permeating into the headgroup region of the bilayer leading to membrane packing. The effects of NaCl on thickness and area per molecule were found to be independent of the concentration of oxidized lipids. NaCl disturbed the bilayers with aldehyde lipids more than those with peroxide lipids. The key finding is that oxidized lipids bend their polar tails toward the water interface. This behavior was monitored by following the time evolution of hydrogen bonds between the oxidized functional groups of different lipids, and the concomitant increase of hydrogen bonds between oxidized functional groups and water molecules. Our results also show that the number of hydrogen bonds should be considered as an equilibration parameter: Very long simulations are needed to equilibrate systems with high NaCl concentrations.


Asunto(s)
Membrana Dobles de Lípidos/química , Simulación de Dinámica Molecular , Cloruro de Sodio/química , Oxidación-Reducción , Soluciones , Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA