Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Med ; 30(4): 1013-1022, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38538867

RESUMEN

Therapeutic vaccines that elicit cytotoxic T cell responses targeting tumor-specific neoantigens hold promise for providing long-term clinical benefit to patients with cancer. Here we evaluated safety and tolerability of a therapeutic vaccine encoding 20 shared neoantigens derived from selected common oncogenic driver mutations as primary endpoints in an ongoing phase 1/2 study in patients with advanced/metastatic solid tumors. Secondary endpoints included immunogenicity, overall response rate, progression-free survival and overall survival. Eligible patients were selected if their tumors expressed one of the human leukocyte antigen-matched tumor mutations included in the vaccine, with the majority of patients (18/19) harboring a mutation in KRAS. The vaccine regimen, consisting of a chimp adenovirus (ChAd68) and self-amplifying mRNA (samRNA) in combination with the immune checkpoint inhibitors ipilimumab and nivolumab, was shown to be well tolerated, with observed treatment-related adverse events consistent with acute inflammation expected with viral vector-based vaccines and immune checkpoint blockade, the majority grade 1/2. Two patients experienced grade 3/4 serious treatment-related adverse events that were also dose-limiting toxicities. The overall response rate was 0%, and median progression-free survival and overall survival were 1.9 months and 7.9 months, respectively. T cell responses were biased toward human leukocyte antigen-matched TP53 neoantigens encoded in the vaccine relative to KRAS neoantigens expressed by the patients' tumors, indicating a previously unknown hierarchy of neoantigen immunodominance that may impact the therapeutic efficacy of multiepitope shared neoantigen vaccines. These data led to the development of an optimized vaccine exclusively targeting KRAS-derived neoantigens that is being evaluated in a subset of patients in phase 2 of the clinical study. ClinicalTrials.gov registration: NCT03953235 .


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Vacunas , Humanos , Antígenos de Neoplasias , Vacunas contra el Cáncer/efectos adversos , Antígenos HLA , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Proteínas Proto-Oncogénicas p21(ras)/genética , Vacunas/uso terapéutico
2.
Blood ; 142(15): 1281-1296, 2023 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-37478401

RESUMEN

Wiskott-Aldrich syndrome (WAS) is a rare X-linked disorder characterized by combined immunodeficiency, eczema, microthrombocytopenia, autoimmunity, and lymphoid malignancies. Gene therapy (GT) to modify autologous CD34+ cells is an emerging alternative treatment with advantages over standard allogeneic hematopoietic stem cell transplantation for patients who lack well-matched donors, avoiding graft-versus-host-disease. We report the outcomes of a phase 1/2 clinical trial in which 5 patients with severe WAS underwent GT using a self-inactivating lentiviral vector expressing the human WAS complementary DNA under the control of a 1.6-kB fragment of the autologous promoter after busulfan and fludarabine conditioning. All patients were alive and well with sustained multilineage vector gene marking (median follow-up: 7.6 years). Clinical improvement of eczema, infections, and bleeding diathesis was universal. Immune function was consistently improved despite subphysiologic levels of transgenic WAS protein expression. Improvements in platelet count and cytoskeletal function in myeloid cells were most prominent in patients with high vector copy number in the transduced product. Two patients with a history of autoimmunity had flares of autoimmunity after GT, despite similar percentages of WAS protein-expressing cells and gene marking to those without autoimmunity. Patients with flares of autoimmunity demonstrated poor numerical recovery of T cells and regulatory T cells (Tregs), interleukin-10-producing regulatory B cells (Bregs), and transitional B cells. Thus, recovery of the Breg compartment, along with Tregs appears to be protective against development of autoimmunity after GT. These results indicate that clinical and laboratory manifestations of WAS are improved with GT with an acceptable safety profile. This trial is registered at clinicaltrials.gov as #NCT01410825.


Asunto(s)
Eccema , Trasplante de Células Madre Hematopoyéticas , Síndrome de Wiskott-Aldrich , Humanos , Síndrome de Wiskott-Aldrich/genética , Síndrome de Wiskott-Aldrich/terapia , Proteína del Síndrome de Wiskott-Aldrich/genética , Células Madre Hematopoyéticas/metabolismo , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Terapia Genética/métodos , Eccema/etiología , Eccema/metabolismo , Eccema/terapia
3.
Nat Commun ; 14(1): 3274, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37280238

RESUMEN

SARS-CoV-2 has resulted in high levels of morbidity and mortality world-wide, and severe complications can occur in older populations. Humoral immunity induced by authorized vaccines wanes within 6 months, and frequent boosts may only offer transient protection. GRT-R910 is an investigational self-amplifying mRNA (samRNA)-based SARS-CoV-2 vaccine delivering full-length Spike and selected conserved non-Spike T cell epitopes. This study reports interim analyses for a phase I open-label dose-escalation trial evaluating GRT-R910 in previously vaccinated healthy older adults (NCT05148962). Primary endpoints of safety and tolerability were assessed. Most solicited local and systemic adverse events (AEs) following GRT-R910 dosing were mild to moderate and transient, and no treatment-related serious AEs were observed. The secondary endpoint of immunogenicity was assessed via IgG binding assays, neutralization assays, interferon-gamma ELISpot, and intracellular cytokine staining. Neutralizing antibody titers against ancestral Spike and variants of concern were boosted or induced by GRT-R910 and, contrasting to authorized vaccines, persisted through at least 6 months after the booster dose. GRT-R910 increased and/or broadened functional Spike-specific T cell responses and primed functional T cell responses to conserved non-Spike epitopes. This study is limited due to small sample size, and additional data from ongoing studies will be required to corroborate these interim findings.


Asunto(s)
COVID-19 , ARN Mensajero/genética , COVID-19/prevención & control , Humanos , Anciano , Masculino , Femenino , Persona de Mediana Edad , Anciano de 80 o más Años , Ensayos Clínicos como Asunto , Anticuerpos Antivirales/inmunología , Anticuerpos Neutralizantes/inmunología , Linfocitos T/inmunología
4.
Nat Med ; 28(8): 1619-1629, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35970920

RESUMEN

Checkpoint inhibitor (CPI) therapies provide limited benefit to patients with tumors of low immune reactivity. T cell-inducing vaccines hold promise to exert long-lasting disease control in combination with CPI therapy. Safety, tolerability and recommended phase 2 dose (RP2D) of an individualized, heterologous chimpanzee adenovirus (ChAd68) and self-amplifying mRNA (samRNA)-based neoantigen vaccine in combination with nivolumab and ipilimumab were assessed as primary endpoints in an ongoing phase 1/2 study in patients with advanced metastatic solid tumors (NCT03639714). The individualized vaccine regimen was safe and well tolerated, with no dose-limiting toxicities. Treatment-related adverse events (TRAEs) >10% included pyrexia, fatigue, musculoskeletal and injection site pain and diarrhea. Serious TRAEs included one count each of pyrexia, duodenitis, increased transaminases and hyperthyroidism. The RP2D was 1012 viral particles (VP) ChAd68 and 30 µg samRNA. Secondary endpoints included immunogenicity, feasibility of manufacturing and overall survival (OS). Vaccine manufacturing was feasible, with vaccination inducing long-lasting neoantigen-specific CD8 T cell responses. Several patients with microsatellite-stable colorectal cancer (MSS-CRC) had improved OS. Exploratory biomarker analyses showed decreased circulating tumor DNA (ctDNA) in patients with prolonged OS. Although small study size limits statistical and translational analyses, the increased OS observed in MSS-CRC warrants further exploration in larger randomized studies.


Asunto(s)
Neoplasias Colorrectales , Pan troglodytes , Adenoviridae/genética , Animales , Neoplasias Colorrectales/tratamiento farmacológico , Fiebre , Humanos , ARN Mensajero/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...