Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38645167

RESUMEN

Apart from ancestry, personal or environmental covariates may contribute to differences in polygenic score (PGS) performance. We analyzed effects of covariate stratification and interaction on body mass index (BMI) PGS (PGSBMI) across four cohorts of European (N=491,111) and African (N=21,612) ancestry. Stratifying on binary covariates and quintiles for continuous covariates, 18/62 covariates had significant and replicable R2 differences among strata. Covariates with the largest differences included age, sex, blood lipids, physical activity, and alcohol consumption, with R2 being nearly double between best and worst performing quintiles for certain covariates. 28 covariates had significant PGSBMI-covariate interaction effects, modifying PGSBMI effects by nearly 20% per standard deviation change. We observed overlap between covariates that had significant R2 differences among strata and interaction effects - across all covariates, their main effects on BMI were correlated with their maximum R2 differences and interaction effects (0.56 and 0.58, respectively), suggesting high-PGSBMI individuals have highest R2 and increase in PGS effect. Using quantile regression, we show the effect of PGSBMI increases as BMI itself increases, and that these differences in effects are directly related to differences in R2 when stratifying by different covariates. Given significant and replicable evidence for context-specific PGSBMI performance and effects, we investigated ways to increase model performance taking into account non-linear effects. Machine learning models (neural networks) increased relative model R2 (mean 23%) across datasets. Finally, creating PGSBMI directly from GxAge GWAS effects increased relative R2 by 7.8%. These results demonstrate that certain covariates, especially those most associated with BMI, significantly affect both PGSBMI performance and effects across diverse cohorts and ancestries, and we provide avenues to improve model performance that consider these effects.

2.
Am J Obstet Gynecol ; 223(4): 559.e1-559.e21, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32289280

RESUMEN

BACKGROUND: Polycystic ovary syndrome is the most common endocrine disorder affecting women of reproductive age. A number of criteria have been developed for clinical diagnosis of polycystic ovary syndrome, with the Rotterdam criteria being the most inclusive. Evidence suggests that polycystic ovary syndrome is significantly heritable, and previous studies have identified genetic variants associated with polycystic ovary syndrome diagnosed using different criteria. The widely adopted electronic health record system provides an opportunity to identify patients with polycystic ovary syndrome using the Rotterdam criteria for genetic studies. OBJECTIVE: To identify novel associated genetic variants under the same phenotype definition, we extracted polycystic ovary syndrome cases and unaffected controls based on the Rotterdam criteria from the electronic health records and performed a discovery-validation genome-wide association study. STUDY DESIGN: We developed a polycystic ovary syndrome phenotyping algorithm on the basis of the Rotterdam criteria and applied it to 3 electronic health record-linked biobanks to identify cases and controls for genetic study. In the discovery phase, we performed an individual genome-wide association study using the Geisinger MyCode and the Electronic Medical Records and Genomics cohorts, which were then meta-analyzed. We attempted validation of the significant association loci (P<1×10-6) in the BioVU cohort. All association analyses used logistic regression, assuming an additive genetic model, and adjusted for principal components to control for population stratification. An inverse-variance fixed-effect model was adopted for meta-analysis. In addition, we examined the top variants to evaluate their associations with each criterion in the phenotyping algorithm. We used the STRING database to characterize protein-protein interaction network. RESULTS: Using the same algorithm based on the Rotterdam criteria, we identified 2995 patients with polycystic ovary syndrome and 53,599 population controls in total (2742 cases and 51,438 controls from the discovery phase; 253 cases and 2161 controls in the validation phase). We identified 1 novel genome-wide significant variant rs17186366 (odds ratio [OR]=1.37 [1.23, 1.54], P=2.8×10-8) located near SOD2. In addition, 2 loci with suggestive association were also identified: rs113168128 (OR=1.72 [1.42, 2.10], P=5.2×10-8), an intronic variant of ERBB4 that is independent from the previously published variants, and rs144248326 (OR=2.13 [1.52, 2.86], P=8.45×10-7), a novel intronic variant in WWTR1. In the further association tests of the top 3 single-nucleotide polymorphisms with each criterion in the polycystic ovary syndrome algorithm, we found that rs17186366 (SOD2) was associated with polycystic ovaries and hyperandrogenism, whereas rs11316812 (ERBB4) and rs144248326 (WWTR1) were mainly associated with oligomenorrhea or infertility. We also validated the previously reported association with DENND1A1. Using the STRING database to characterize protein-protein interactions, we found both ERBB4 and WWTR1 can interact with YAP1, which has been previously associated with polycystic ovary syndrome. CONCLUSION: Through a discovery-validation genome-wide association study on polycystic ovary syndrome identified from electronic health records using an algorithm based on Rotterdam criteria, we identified and validated a novel genome-wide significant association with a variant near SOD2. We also identified a novel independent variant within ERBB4 and a suggestive association with WWTR1. With previously identified polycystic ovary syndrome gene YAP1, the ERBB4-YAP1-WWTR1 network suggests involvement of the epidermal growth factor receptor and the Hippo pathway in the multifactorial etiology of polycystic ovary syndrome.


Asunto(s)
Síndrome del Ovario Poliquístico/genética , Receptor ErbB-4/genética , Transactivadores/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adulto , Estudios de Casos y Controles , Registros Electrónicos de Salud , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Hiperandrogenismo/genética , Infertilidad Femenina/genética , Persona de Mediana Edad , Oligomenorrea/genética , Quistes Ováricos/genética , Síndrome del Ovario Poliquístico/diagnóstico , Síndrome del Ovario Poliquístico/fisiopatología , Polimorfismo de Nucleótido Simple , Superóxido Dismutasa/genética , Factores de Transcripción/metabolismo , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteínas Señalizadoras YAP
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA