RESUMEN
The transport properties of the nucleobase hypoxanthine were examined in the human umbilical vein endothelial cell line ECV 304. Initial rates of hypoxanthine influx were independent of extracellular cations: replacement of Na+ with Li+, Rb+, N-methyl-D-glucamine or choline had no significant effect on hypoxanthine uptake by ECV 304 cells. Kinetic analysis demonstrated the presence of a single saturable system for the transport of hypoxanthine in ECV 304 cells with an apparent K(m) of 320 +/- 10 microM and a Vmax of 5.6 +/- 0.9 pmol/10(6) cells per s. Hypoxanthine uptake was inhibited by the nucleosides adenosine, uridine and thymidine (apparent Ki 41 +/- 6, 240 +/- 27 and 59 +/- 8 microM respectively) and the nucleoside transport inhibitors nitrobenzylthioinosine (NBMPR), dilazep and dipyridamole (apparent Ki 2.5 +/- 0.3, 11 +/- 3 and 0.16 +/- 0.006 microM respectively), whereas the nucleobases adenine, guanine and thymine had little effect (50% inhibition at > 1 mM). ECV 304 cells were also shown to transport adenosine via both the NBMPR-sensitive and -insensitive nucleoside carriers. Hypoxanthine specifically inhibited adenosine transport via the NBMPR-insensitive system in a competitive manner (apparent Ki 290 +/- 14 microM). These results indicate that hypoxanthine entry into ECV 304 endothelial cells is mediated by the NBMPR-insensitive nucleoside carrier present in these cells.
Asunto(s)
Proteínas Portadoras/efectos de los fármacos , Endotelio Vascular/metabolismo , Hipoxantinas/metabolismo , Proteínas de la Membrana/efectos de los fármacos , Tioinosina/análogos & derivados , Adenosina/metabolismo , Transporte Biológico , Proteínas Portadoras/metabolismo , Línea Celular , Endotelio Vascular/enzimología , Humanos , Hipoxantina , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Nucleósidos , Tioinosina/farmacologíaRESUMEN
Pregnancy complicated by diabetes is a relatively frequent event and may result in fetal embriopathy. However, little is known regarding whether placental transport functions are altered. In this study, we have compared the activity of the nitrobenzylthioinosine (NBMPR)-sensitive adenosine transporter and adenosine metabolism in human placental brush-border- and basal-membrane vesicles from placentas of normal and diabetic pregnancies. Neither [3H]NBMPR binding, a marker of the facilitative-diffusion nucleoside transporter in the human placenta, nor adenosine metabolism exhibited a significant difference in either the brush-border- or the basal-membrane vesicles between the normal and diabetic group, except for an increased affinity in [3H]NBMPR binding at the basal side in diabetic placenta. This result contrasts with an earlier finding using the same group of patients that adenosine transport is downregulated in umbilical vein endothelial cells from diabetic pregnancies. It is concluded that adenosine transport is modulated selectively in different tissues in diabetic pregnancies.