Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Methods Mol Biol ; 2786: 205-215, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814396

RESUMEN

The recent success of the synthetic mRNA-based anti-COVID-19 vaccines has demonstrated the broad potential of the mRNA platform for applications in medicine, thanks to the combined efforts of a small community that has vastly improved key determinants such as design and formulation of synthetic mRNA during the past three decades. However, the cost of production and sensitivity to enzymatic degradation are still limiting the broader application of synthetic mRNA for therapeutic applications. The increased interest in mRNA-based technologies has spurred a renaissance for circular RNA (circRNA), as the lack of free 5' and 3' ends substantially increases resistance against enzymatic degradation in biological systems and does not require expensive cap analogs, as translation is controlled by an Internal Ribosome Entry Site (IRES) sequence. Thus, it can be expected that circRNA will play an important role for future mRNA therapeutics. Here we provide a detailed guide to the production of synthetic circRNA.


Asunto(s)
ARN Circular , ARN Circular/genética , Humanos , Vectores Genéticos/genética , SARS-CoV-2/genética , ARN Mensajero/genética , COVID-19/virología , COVID-19/genética , ARN/genética
2.
Methods Mol Biol ; 2786: 237-254, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38814398

RESUMEN

During recent years, RNA therapeutics have begun to make a substantial impact in the clinic, with the approval of the siRNA-based therapeutic Patisiran in 2018, and of the two mRNA SARS-CoV-2 vaccines, BNT162b2 and mRNA-1273 in 2021. A key to the success of these therapeutics lies in the lipid-based delivery system. The therapeutic RNAs are encapsulated in lipid nanoparticles (LNPs), which protect against enzymatic degradation and efficiently deliver the RNA across the cell membrane into the cytosol. Thereby, the method used for LNP synthesis and its lipid composition are crucial aspects that decide the efficacy of the LNP-RNA hetero system. Here we provide a detailed guide for the simple preparation of LNP-encapsulated mRNA vaccines.


Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Lípidos , Nanopartículas , ARN Mensajero , SARS-CoV-2 , Nanopartículas/química , SARS-CoV-2/inmunología , SARS-CoV-2/genética , Humanos , Vacunas contra la COVID-19/inmunología , Lípidos/química , COVID-19/prevención & control , COVID-19/virología , ARN Mensajero/genética , Vacuna nCoV-2019 mRNA-1273 , Vacuna BNT162 , Vacunas de ARNm , Liposomas/química , Nanovacunas
3.
Open Forum Infect Dis ; 11(1): ofad641, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38179103

RESUMEN

Genetic defects in the interferon (IFN) system or neutralizing autoantibodies against type I IFNs contribute to severe COVID-19. Such autoantibodies were proposed to affect post-COVID-19 syndrome (PCS), possibly causing persistent fatigue for >12 weeks after confirmed SARS-CoV-2 infection. In the current study, we investigated 128 patients with PCS, 21 survivors of severe COVID-19, and 38 individuals who were asymptomatic. We checked for autoantibodies against IFN-α, IFN-ß, and IFN-ω. Few patients with PCS had autoantibodies against IFNs but with no neutralizing activity, indicating a limited role of type I IFNs in PCS pathogenesis. In a subset consisting of 28 patients with PCS, we evaluated IFN-stimulated gene activity and showed that it did not correlate with fatigue. In conclusion, impairment of the type I IFN system is unlikely responsible for adult PCS.

4.
Nat Commun ; 14(1): 3392, 2023 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-37296100

RESUMEN

Dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects against cardiovascular disease by metabolising the risk factor asymmetric dimethylarginine (ADMA). However, the question whether the second DDAH isoform, DDAH2, directly metabolises ADMA has remained unanswered. Consequently, it is still unclear if DDAH2 may be a potential target for ADMA-lowering therapies or if drug development efforts should focus on DDAH2's known physiological functions in mitochondrial fission, angiogenesis, vascular remodelling, insulin secretion, and immune responses. Here, an international consortium of research groups set out to address this question using in silico, in vitro, cell culture, and murine models. The findings uniformly demonstrate that DDAH2 is incapable of metabolising ADMA, thus resolving a 20-year controversy and providing a starting point for the investigation of alternative, ADMA-independent functions of DDAH2.


Asunto(s)
Amidohidrolasas , Arginina , Ratones , Animales , Amidohidrolasas/metabolismo , Arginina/metabolismo , Óxido Nítrico/metabolismo
5.
Mol Psychiatry ; 28(7): 2872-2877, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37131073

RESUMEN

In the aftermath of the COVID-19 pandemic, we are witnessing an unprecedented wave of post-infectious complications. Most prominently, millions of patients with Long-Covid complain about chronic fatigue and severe post-exertional malaise. Therapeutic apheresis has been suggested as an efficient treatment option for alleviating and mitigating symptoms in this desperate group of patients. However, little is known about the mechanisms and biomarkers correlating with treatment outcomes. Here, we have analyzed in different cohorts of Long-Covid patients specific biomarkers before and after therapeutic apheresis. In patients that reported a significant improvement following two cycles of therapeutic apheresis, there was a significant reduction in neurotransmitter autoantibodies, lipids, and inflammatory markers. Furthermore, we observed a 70% reduction in fibrinogen, and following apheresis, erythrocyte rouleaux formation and fibrin fibers largely disappeared as demonstrated by dark field microscopy. This is the first study demonstrating a pattern of specific biomarkers with clinical symptoms in this patient group. It may therefore form the basis for a more objective monitoring and a clinical score for the treatment of Long-Covid and other postinfectious syndromes.


Asunto(s)
Eliminación de Componentes Sanguíneos , COVID-19 , Humanos , Lipoproteínas LDL , Autoanticuerpos , Síndrome Post Agudo de COVID-19 , Pandemias , Inflamación , Biomarcadores
6.
J Neural Transm (Vienna) ; 130(9): 1097-1112, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-36792833

RESUMEN

The enzyme dimethylarginine dimethylaminohydrolase 1 (DDAH1) plays a pivotal role in the regulation of nitric oxide levels by degrading the main endogenous nitric oxide synthase inhibitor asymmetric dimethylarginine (ADMA). Growing evidence highlight the potential implication of DDAH/ADMA axis in the etiopathogenesis of several neuropsychiatric and neurological disorders, yet the underlying molecular mechanisms remain elusive. In this study, we sought to investigate the role of DDAH1 in behavioral endophenotypes with neuropsychiatric relevance. To achieve this, a global DDAH1 knock-out (DDAH1-ko) mouse strain was employed. Behavioral testing and brain region-specific neurotransmitter profiling have been conducted to assess the effect of both genotype and sex. DDAH1-ko mice exhibited increased exploratory behavior toward novel objects, altered amphetamine response kinetics and decreased dopamine metabolite 3,4-dihydroxyphenylacetic acid (DOPAC) level in the piriform cortex and striatum. Females of both genotypes showed the most robust amphetamine response. These results support the potential implication of the DDAH/ADMA pathway in central nervous system processes shaping the behavioral outcome. Yet, further experiments are required to complement the picture and define the specific brain-regions and mechanisms involved.


Asunto(s)
Anfetamina , Dopamina , Animales , Femenino , Ratones , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Anfetamina/farmacología , Inhibidores Enzimáticos/farmacología , Genotipo , Ratones Noqueados , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa/genética
7.
Rep Biochem Mol Biol ; 12(2): 211-219, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38317809

RESUMEN

Background: Epithelial-mesenchymal transition (EMT) is an important physiologic process that determines the outcome of lung tissue healing after injury. Stimuli and molecular cascades inducing EMT lead to up-regulation of the mesenchymal-specific genes in the alveolar epithelial cells and to down-regulation of the genes coding for epithelial markers. Alveolar epithelial cell lines are commonly used as in vitro models to study processes occurring in the lung tissue. The aim of this study is to quantify and compare mRNA expression levels of epithelial and mesenchymal markers in a number of lung epithelial cell lines. Methods: Lung epithelial cell lines L2, R3/1 and RLE-6TN were cultured. Repeated mRNA isolation, reverse transcription, and quantitative PCR with primers to epithelial (E-cadherin, occludin, and ZO-2) and mesenchymal (α-SMA, collagen III, and vimentin) markers were performed. Results: First, our study revealed a higher level of epithelial transcripts in the RLE-6TN cell line compared to L2 and R3/1 cells. Secondly, we have found simultaneous mRNA expression of both epithelial (E-cadherin, occludin and ZO-2) and mesenchymal (α-SMA, collagen III and vimentin) markers in all cell lines studied. Conclusions: Our data indicate that at the transcriptional level the L2, R3/1, and RLE-6TN cell lines are at one of the intermediate stages of EMT, which opens new possibilities for the study of EMT on cell lines. Determination of the direction of changes in epithelial and mesenchymal markers will make it possible to establish the factors responsible for both EMT and reverse mesenchymal-epithelial transition.

8.
Oncoimmunology ; 11(1): 2147665, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36419823

RESUMEN

Nanoparticles of different sizes formulated with unmodified RNA and Protamine differentially engage Toll-like Receptors (TLRs) and activate innate immune responses in vitro. Here, we report that similar differential immunostimulation that depends on the nanoparticle sizes is induced in vivo in wild type as well as in humanized mice. In addition, we found that the schedule of injections strongly affects the magnitude of the immune response. Immunostimulating 130 nm nanoparticles composed of RNA and Protamine can promote lung metastasis clearance but provides no control of subcutaneous tumors in a CT26 tumor model. We further enhanced the therapeutic capacity of Protamine-RNA nanoparticles by incorporating chemotherapeutic base analogues in the RNA; we coined these immunochemotherapeutic RNAs (icRNAs). Protamine-icRNA nanoparticles were successful at controlling established subcutaneous CT26 and B16 tumors as well as orthotopic glioblastoma. These data indicate that icRNAs are promising cancer therapies, which warrants their further validation for use in the clinic.


Asunto(s)
Antineoplásicos , Glioblastoma , Nanopartículas , Animales , Ratones , ARN , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Nanopartículas/uso terapéutico , Protaminas
9.
Heart Fail Clin ; 18(4): 609-623, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36216490

RESUMEN

Fifty articles comprising 18 randomized controlled trials (RCTs), 16 observational studies, and 16 meta-analyses on the safety and effectiveness of sodium-glucose cotransporter 2 inhibitors were evaluated in the current review. Only one-fourth of the cohorts of recent trials had peripheral arterial disease (PAD), whereas this subgroup was at high risk for amputations. Despite a remarkable heterogeneity of RCTs, only 2 trials on canagliflozin suggested excess amputation rates, whereas several observational studies generated conflicting conclusions and remained short on possible explanations. Preliminary evidence from observational research suggested that patients with PAD may even benefit from SGLT-2 inhibitor treatment due to lower observed heart failure hospitalization rates.


Asunto(s)
Diabetes Mellitus Tipo 2 , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Canagliflozina , Glucosa , Humanos , Hipoglucemiantes/farmacología , Sodio , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Inhibidores del Cotransportador de Sodio-Glucosa 2/uso terapéutico
10.
Horm Metab Res ; 54(11): 715-720, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36113501

RESUMEN

A continual increase in cases of Long/Post COVID constitutes a medical and socioeconomic challenge to health systems around the globe. While the true extent of this problem cannot yet be fully evaluated, recent data suggest that up to 20% of people with confirmed SARS-CoV-2 suffer from clinically relevant symptoms of Long/Post COVID several weeks to months after the acute phase. The clinical presentation is highly variable with the main symptoms being chronic fatigue, dyspnea, and cognitive symptoms. Extracorporeal apheresis has been suggested to alleviate symptoms of Post/COVID. Thus, numerous patients are currently treated with apheresis. However, at present there is no data from randomized controlled trials available to confirm the efficacy. Therefore, physicians rely on the experience of practitioners and centers performing this treatment. Here, we summarize clinical experience on extracorporeal apheresis in patients with Post/COVID from centers across Germany.


Asunto(s)
Eliminación de Componentes Sanguíneos , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/terapia , Alemania , Síndrome Post Agudo de COVID-19
12.
Horm Metab Res ; 54(8): 571-577, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35944525

RESUMEN

The COVID-19 pandemic, caused by the SARS-CoV-2 virus, is an unprecedented challenge for the global community. The pathogenesis of COVID-19, its complications and long term sequelae (so called Long/Post-COVID) include, in addition to the direct virus-induced tissues injury, multiple secondary processes, such as autoimmune response, impairment of microcirculation, and hyperinflammation. Similar pathological processes, but in the settings of neurological, cardiovascular, rheumatological, nephrological, and dermatological diseases can be successfully treated by powerful methods of Therapeutic Apheresis (TA). We describe here the rationale and the initial attempts of TA treatment in severe cases of acute COVID-19. We next review the evidence for the role of autoimmunity, microcirculatory changes and inflammation in pathogenesis of Long/Post COVID and the rationale for targeting those pathogenic processes by different methods of TA. Finally, we discuss the impact of COVID-19 pandemic on patients, who undergo regular TA treatments due to their underlying chronic conditions, with the specific focus on the patients with inherited lipid diseases being treated at the Dresden University Apheresis Center.


Asunto(s)
Eliminación de Componentes Sanguíneos , COVID-19 , COVID-19/complicaciones , COVID-19/terapia , Humanos , Microcirculación , Pandemias , SARS-CoV-2 , Síndrome Post Agudo de COVID-19
13.
Sci Rep ; 12(1): 9381, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672381

RESUMEN

Elevated plasma concentrations of asymmetric dimethylarginine (ADMA) are associated with an increased risk of mortality and adverse cardiovascular outcomes. ADMA can be metabolized by dimethylarginine dimethylaminohydrolases (DDAHs) and by alanine-glyoxylate aminotransferase 2 (AGXT2). Deletion of DDAH1 in mice leads to elevation of ADMA in plasma and increase in blood pressure, while overexpression of human DDAH1 is associated with a lower plasma ADMA concentration and protective cardiovascular effects. The possible role of alternative metabolism of ADMA by AGXT2 remains to be elucidated. The goal of the current study was to test the hypothesis that transgenic overexpression of AGXT2 leads to lowering of plasma levels of ADMA and protection from vascular damage in the setting of DDAH1 deficiency. We generated transgenic mice (TG) with ubiquitous overexpression of AGXT2. qPCR and Western Blot confirmed the expression of the transgene. Systemic ADMA levels were decreased by 15% in TG mice. In comparison with wild type animals plasma levels of asymmetric dimethylguanidino valeric acid (ADGV), the AGXT2 associated metabolite of ADMA, were six times higher. We crossed AGXT2 TG mice with DDAH1 knockout mice and observed that upregulation of AGXT2 lowers plasma ADMA and pulse pressure and protects the mice from endothelial dysfunction and adverse aortic remodeling. Upregulation of AGXT2 led to lowering of ADMA levels and protection from ADMA-induced vascular damage in the setting of DDAH1 deficiency. This is especially important, because all the efforts to develop pharmacological ADMA-lowering interventions by means of upregulation of DDAHs have been unsuccessful.


Asunto(s)
Arginina , Enfermedades Vasculares , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Animales , Aorta/metabolismo , Arginina/análogos & derivados , Arginina/metabolismo , Presión Sanguínea , Ratones , Transaminasas/genética , Transaminasas/metabolismo
14.
Cell Mol Neurobiol ; 42(7): 2273-2288, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34014421

RESUMEN

The endogenous methylated derivative of ʟ-arginine, Nω,Nω'-dimethyl-ʟ-arginine (asymmetric dimethylarginine, ADMA), an independent risk factor in many diseases, inhibits the activity of nitric oxide synthases and, consequently, modulates the availability of nitric oxide. While most studies on the biological role of ADMA have focused on endothelial and inducible nitric oxide synthases modulation and its contribution to cardiovascular, metabolic, and renal diseases, a role in regulating neuronal nitric oxide synthases and pathologies of the central nervous system is less understood. The two isoforms of dimethylarginine dimethylaminohydrolase (DDAH), DDAH1 and DDAH2, are thought to be the main enzymes responsible for ADMA catabolism. A current impediment is limited knowledge on specific tissue and cellular distribution of DDAH enzymes within the brain. In this study, we provide a detailed characterization of the regional and cellular distribution of DDAH1 and DDAH2 proteins in the adult murine and human brain. Immunohistochemical analysis showed a wide distribution of DDAH1, mapping to multiple cell types, while DDAH2 was detected in a limited number of brain regions and exclusively in neurons. Our results provide key information for the investigation of the pathophysiological roles of the ADMA/DDAH system in neuropsychiatric diseases and pave the way for the development of novel selective therapeutic approaches.


Asunto(s)
Isoenzimas , Óxido Nítrico , Amidohidrolasas , Animales , Sistema Nervioso Central , Humanos , Ratones
15.
Eur J Vasc Endovasc Surg ; 62(6): 981-990, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34782230

RESUMEN

OBJECTIVE: To assess the association between long term risk of hospitalisation for heart failure (HHF) and lower extremity minor and major amputation (LEA) in patients initiating sodium glucose cotransporter 2 inhibitors (SGLT2i) suffering from type 2 diabetes and peripheral arterial disease (PAD). Outcomes were compared with patients without PAD and evaluated separately for the time periods before and after the official warning of the European Medicines Agency (EMA) in early 2017. METHODS: This study used BARMER German health claims data including all patients suffering from type 2 diabetes initiating SGLT2i therapy between 1 January 2013 and 31 December 2019 with follow up until the end of 2020. New users of glucagon like peptide 1 receptor agonists (GLP1-RAs) were used as active comparators. Inverse probability weighting with truncated stabilised weights was used to adjust for confounding, and five year risks of HHF and LEA were estimated using Cox regression. Periods before and after the EMA warning were analysed separately and stratified by presence of concomitant PAD. RESULTS: In total, 44 284 (13.6% PAD) and 56 878 (16.3% PAD) patients initiated SGLT2i or GLP1-RA, respectively. Before the EMA warning, initiation of SGLT2i was associated with a lower risk of HHF in patients with PAD (hazard ratio, HR, 0.85, 95% confidence interval, CI, 0.73 - 0.99) and a higher risk of LEA in patients without PAD (HR 1.79, 95% CI 1.04 - 2.92). After the EMA warning, the efficacy and safety endpoints were no longer statistically different between groups. CONCLUSION: The results from this large nationwide real world study highlight that PAD patients exhibit generally high amputation risks. This study refutes the idea that the presence of PAD explains the excess LEA risk associated with initiation of SGLT2i. The fact that differentials among study groups diminished after the EMA warning in early 2017 emphasises that regulatory surveillance measures worked in everyday clinical practice.


Asunto(s)
Amputación Quirúrgica , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Extremidad Inferior/irrigación sanguínea , Enfermedad Arterial Periférica/cirugía , Inhibidores del Cotransportador de Sodio-Glucosa 2/efectos adversos , Reclamos Administrativos en el Cuidado de la Salud , Anciano , Amputación Quirúrgica/efectos adversos , Bases de Datos Factuales , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/epidemiología , Etiquetado de Medicamentos , Femenino , Alemania/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad Arterial Periférica/diagnóstico , Enfermedad Arterial Periférica/epidemiología , Estudios Retrospectivos , Medición de Riesgo , Factores de Riesgo , Factores de Tiempo , Resultado del Tratamiento
16.
iScience ; 24(10): 103189, 2021 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-34703990

RESUMEN

Vascular endothelial cell growth factor (VEGF) is a key regulator of vascular permeability. Herein we aim to understand how acute and chronic exposures of VEGF induce different levels of vascular permeability. We demonstrate that chronic VEGF exposure leads to decreased phosphorylation of VEGFR2 and c-Src as well as steady increases of nitric oxide (NO) as compared to that of acute exposure. Utilizing heat-inducible VEGF transgenic zebrafish (Danio rerio) and establishing an algorithm incorporating segmentation techniques for quantification, we monitored acute and chronic VEGF-induced vascular hyperpermeability in real time. Importantly, dimethylarginine dimethylaminohydrolase-1 (DDAH1), an enzyme essential for NO generation, was shown to play essential roles in both acute and chronic vascular permeability in cultured human cells, zebrafish model, and Miles assay. Taken together, our data reveal acute and chronic VEGF exposures induce divergent signaling pathways and identify DDAH1 as a critical player and potentially a therapeutic target of vascular hyperpermeability-mediated pathogenesis.

17.
Am J Physiol Heart Circ Physiol ; 321(5): H825-H838, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34533401

RESUMEN

Cardiovascular complications are the leading cause of death, and elevated levels of asymmetric dimethyarginine (ADMA), an endogenous inhibitor of nitric oxide synthase, are implicated in their pathophysiology. We investigated the role of dimethylarginine dimethylaminohydrolase 1 (DDAH1), an enzyme hydrolyzing ADMA, in prevention of cardiovascular remodeling during hypertension. We hypothesized that the animals overexpressing DDAH1 will be protected from angiotensin II (ANG II)-induced end organ damage. Angiotensin II (ANG II) was infused in two doses: 0.75 and 1.5 mg/kg/day in DDAH1 transgenic mice (DDAH1 TG) and wild-type (WT) littermates for 2 or 4 wk. Echocardiography was performed in the first and fourth weeks of the infusion, systolic blood pressure (SBP) was measured weekly, and cardiac hypertrophy and vascular remodeling was assessed by histology. Increase in SBP after 1 wk of ANG II infusion was not different between the groups, whereas TG mice had lower SBP at later time points. TG mice were protected from cardiovascular remodeling after 2 wk of ANG II infusion in the high dose and after 4 wk in the moderate dose. TG mice had higher left ventricular lumen-to-wall ratio, lower cardiomyocyte cross-sectional area, and less interstitial fibrosis compared with WT controls. In aorta, TG mice had less adventitial fibrosis, lower medial thickness with preserved elastin content, lower counts of inflammatory cells, lower levels of active matrix metalloproteinase-2, and showed better endothelium-dependent relaxation. We demonstrated that overexpression of DDAH1 protects from ANG II-induced cardiovascular remodeling and progression of hypertension by preserving endothelial function and limiting inflammation.NEW & NOTEWORTHY We showed that overexpression of dimethylarginine dimethylaminohydrolase 1 (DDAH1) protects from angiotensin II-induced cardiovascular damage, progression of hypertension, and adverse vascular remodeling in vivo. This protective effect is associated with decreased levels of asymmetric dimethylarginine, preservation of endothelial function, inhibition of cardiovascular inflammation, and lower activity of matrix metalloproteinase-2. Our findings are highly clinically relevant, because they suggest that upregulation of DDAH1 might be a promising therapeutic approach against angiotensin II-induced end organ damage.


Asunto(s)
Amidohidrolasas/biosíntesis , Aorta/enzimología , Presión Sanguínea , Ventrículos Cardíacos/enzimología , Hipertensión/enzimología , Hipertrofia Ventricular Izquierda/enzimología , Remodelación Vascular , Función Ventricular Izquierda , Remodelación Ventricular , Amidohidrolasas/genética , Angiotensina II , Animales , Aorta/patología , Aorta/fisiopatología , Modelos Animales de Enfermedad , Inducción Enzimática , Fibrosis , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Hipertensión/inducido químicamente , Hipertensión/patología , Hipertensión/fisiopatología , Hipertrofia Ventricular Izquierda/inducido químicamente , Hipertrofia Ventricular Izquierda/patología , Hipertrofia Ventricular Izquierda/fisiopatología , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Tiempo , Vasodilatación
18.
Pharmaceutics ; 13(7)2021 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-34371731

RESUMEN

Efficient vaccination can be achieved by injections of in vitro transcribed mRNA (ivt mRNA) coding for antigens. This vaccine format is particularly versatile and allows the production of individualised vaccines conferring, T-cell immunity against specific cancer mutations. The CDR3 hypervariable regions of immune receptors (T-cell receptor, TCR or B-cell receptor, BCR) in the context of T- or B-cell leukaemia or lymphoma are targetable and specific sequences, similar to cancer mutations. We evaluated the functionality of an mRNA-based vaccine designed to trigger immunity against TCR CDR3 regions in an EL4 T-lymphoma cell line-derived murine in vivo model. Vaccination against the hypervariable TCR regions proved to be a feasible approach and allowed for protection against T-lymphoma, even though immune escape in terms of TCR downregulation paralleled the therapeutic effect. However, analysis of human cutaneous T-cell lymphoma samples indicated that, as is the case in B-lymphomas, the clonotypic receptor may be a driver mutation and is not downregulated upon treatment. Thus, vaccination against TCR CDR3 regions using customised ivt mRNA is a promising immunotherapy method to be explored for the treatment of patients with T-cell lymphomas.

19.
Viruses ; 13(7)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202260

RESUMEN

The quantification of T-cell immune responses is crucial for the monitoring of natural and treatment-induced immunity, as well as for the validation of new immunotherapeutic approaches. The present study presents a simple method based on lipofection of synthetic mRNA in mononuclear cells as a method to determine in vitro T-cell responses. We compared several commercially available transfection reagents for their potential to transfect mRNA into human peripheral blood mononuclear cells and murine splenocytes. We also investigated the impact of RNA modifications in improving this method. Our results demonstrate that antigen-specific T-cell immunomonitoring can be easily and quickly performed by simple lipofection of antigen-coding mRNA in complex immune cell populations. Thus, our work discloses a convenient solution for the in vitro monitoring of natural or therapy-induced T-cell immune responses.


Asunto(s)
Antígenos/genética , Antígenos/inmunología , Leucocitos Mononucleares/inmunología , Monitorización Inmunológica/métodos , ARN Mensajero/genética , Linfocitos T/inmunología , Animales , Línea Celular , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Humanos , Inmunidad Innata , Virus de la Influenza A/inmunología , Liposomas , Ratones , Ratones Endogámicos C57BL , Nanopartículas , Bazo/citología , Transfección , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología
20.
Pharmaceutics ; 13(6)2021 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-34198550

RESUMEN

Protamine is a natural cationic peptide mixture mostly known as a drug for the neutralization of heparin and as a compound in formulations of slow-release insulin. Protamine is also used for cellular delivery of nucleic acids due to opposite charge-driven coupling. This year marks 60 years since the first use of Protamine as a transfection enhancement agent. Since then, Protamine has been broadly used as a stabilization agent for RNA delivery. It has also been involved in several compositions for RNA-based vaccinations in clinical development. Protamine stabilization of RNA shows double functionality: it not only protects RNA from degradation within biological systems, but also enhances penetration into cells. A Protamine-based RNA delivery system is a flexible and versatile platform that can be adjusted according to therapeutic goals: fused with targeting antibodies for precise delivery, digested into a cell penetrating peptide for better transfection efficiency or not-covalently mixed with functional polymers. This manuscript gives an overview of the strategies employed in protamine-based RNA delivery, including the optimization of the nucleic acid's stability and translational efficiency, as well as the regulation of its immunostimulatory properties from early studies to recent developments.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...