Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Syst Biol ; 20(7): 767-798, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38755290

RESUMEN

Static gene expression programs have been extensively characterized in stem cells and mature human cells. However, the dynamics of RNA isoform changes upon cell-state-transitions during cell differentiation, the determinants and functional consequences have largely remained unclear. Here, we established an improved model for human neurogenesis in vitro that is amenable for systems-wide analyses of gene expression. Our multi-omics analysis reveals that the pronounced alterations in cell morphology correlate strongly with widespread changes in RNA isoform expression. Our approach identifies thousands of new RNA isoforms that are expressed at distinct differentiation stages. RNA isoforms mainly arise from exon skipping and the alternative usage of transcription start and polyadenylation sites during human neurogenesis. The transcript isoform changes can remodel the identity and functions of protein isoforms. Finally, our study identifies a set of RNA binding proteins as a potential determinant of differentiation stage-specific global isoform changes. This work supports the view of regulated isoform changes that underlie state-transitions during neurogenesis.


Asunto(s)
Diferenciación Celular , Neurogénesis , Neuronas , Isoformas de ARN , Humanos , Neurogénesis/genética , Diferenciación Celular/genética , Isoformas de ARN/genética , Isoformas de ARN/metabolismo , Neuronas/metabolismo , Neuronas/citología , Empalme Alternativo , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/genética , Exones/genética
2.
Nat Commun ; 14(1): 4971, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37591883

RESUMEN

Gene transcription by RNA polymerase II (Pol II) is under control of promoters and distal regulatory elements known as enhancers. Enhancers are themselves transcribed by Pol II correlating with their activity. How enhancer transcription is regulated and coordinated with transcription at target genes has remained unclear. Here, we developed a high-sensitive native elongating transcript sequencing approach, called HiS-NET-seq, to provide an extended high-resolution view on transcription, especially at lowly transcribed regions such as enhancers. HiS-NET-seq uncovers new transcribed enhancers in human cells. A multi-omics analysis shows that genome-wide enhancer transcription depends on the BET family protein BRD4. Specifically, BRD4 co-localizes to enhancer and promoter-proximal gene regions, and is required for elongation activation at enhancers and their genes. BRD4 keeps a set of enhancers and genes in proximity through long-range contacts. From these studies BRD4 emerges as a general regulator of enhancer transcription that may link transcription at enhancers and genes.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Humanos , Proteínas Nucleares/genética , Factores de Transcripción/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN Polimerasa II/genética , Transcripción Genética , Proteínas de Ciclo Celular/genética
3.
Methods Mol Biol ; 2351: 41-65, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34382183

RESUMEN

Enhancers are transcribed by RNA polymerase II (Pol II). In order to study the regulation of enhancer transcription and its function in target gene control, methods are required that track genome transcription with high precision in vivo. Here, we provide step-by-step guidance for performing native elongating transcript sequencing (NET-Seq) in mammalian cells. NET-Seq allows quantitative measurements of transcription genome-wide, including enhancer transcription, with single-nucleotide and DNA strand resolution. The approach consists of capturing and efficiently converting the 3'-ends of the nascent RNA into a sequencing library followed by next-generation sequencing and computational data analysis. The protocol includes quality control measurements to monitor the success of the main steps. Following this protocol, a NET-Seq library is obtained within 5 days.


Asunto(s)
Elementos de Facilitación Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de Secuencia de ARN/métodos , Transcripción Genética , Animales , Células Cultivadas , Cromatina/genética , Biología Computacional/métodos , ADN , Biblioteca de Genes , Humanos , Reacción en Cadena de la Polimerasa , ARN , ARN Polimerasa II/metabolismo , Programas Informáticos
4.
Mol Cell ; 81(17): 3589-3603.e13, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34324863

RESUMEN

Transcription elongation has emerged as a regulatory hub in gene expression of metazoans. A major control point occurs during early elongation before RNA polymerase II (Pol II) is released into productive elongation. Prior research has linked BRD4 with transcription elongation. Here, we use rapid BET protein and BRD4-selective degradation along with quantitative genome-wide approaches to investigate direct functions of BRD4 in Pol II transcription regulation. Notably, as an immediate consequence of acute BRD4 loss, promoter-proximal pause release is impaired, and transcriptionally engaged Pol II past this checkpoint undergoes readthrough transcription. An integrated proteome-wide analysis uncovers elongation and 3'-RNA processing factors as core BRD4 interactors. BRD4 ablation disrupts the recruitment of general 3'-RNA processing factors at the 5'-control region, which correlates with RNA cleavage and termination defects. These studies, performed in human cells, reveal a BRD4-mediated checkpoint and begin to establish a molecular link between 5'-elongation control and 3'-RNA processing.


Asunto(s)
Proteínas de Ciclo Celular/fisiología , Proteínas Nucleares/fisiología , Elongación de la Transcripción Genética/fisiología , Factores de Transcripción/fisiología , Animales , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Expresión Génica , Histonas/metabolismo , Humanos , Ratones , Proteínas Nucleares/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/fisiología , Factores de Transcripción/metabolismo , Terminación de la Transcripción Genética/fisiología , Transcripción Genética/genética , Transcripción Genética/fisiología
5.
Nucleic Acids Res ; 49(8): 4402-4420, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33788942

RESUMEN

Pausing of transcribing RNA polymerase is regulated and creates opportunities to control gene expression. Research in metazoans has so far mainly focused on RNA polymerase II (Pol II) promoter-proximal pausing leaving the pervasive nature of pausing and its regulatory potential in mammalian cells unclear. Here, we developed a pause detecting algorithm (PDA) for nucleotide-resolution occupancy data and a new native elongating transcript sequencing approach, termed nested NET-seq, that strongly reduces artifactual peaks commonly misinterpreted as pausing sites. Leveraging PDA and nested NET-seq reveal widespread genome-wide Pol II pausing at single-nucleotide resolution in human cells. Notably, the majority of Pol II pauses occur outside of promoter-proximal gene regions primarily along the gene-body of transcribed genes. Sequence analysis combined with machine learning modeling reveals DNA sequence properties underlying widespread transcriptional pausing including a new pause motif. Interestingly, key sequence determinants of RNA polymerase pausing are conserved between human cells and bacteria. These studies indicate pervasive sequence-induced transcriptional pausing in human cells and the knowledge of exact pause locations implies potential functional roles in gene expression.


Asunto(s)
Secuencia Conservada , ARN Polimerasa II/metabolismo , RNA-Seq/métodos , Transcripción Genética , Algoritmos , Secuencia de Bases , ADN/química , ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , ARN Polimerasa II/química
6.
EMBO J ; 39(7): e101548, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32107786

RESUMEN

Pervasive transcription is a widespread phenomenon leading to the production of a plethora of non-coding RNAs (ncRNAs) without apparent function. Pervasive transcription poses a threat to proper gene expression that needs to be controlled. In yeast, the highly conserved helicase Sen1 restricts pervasive transcription by inducing termination of non-coding transcription. However, the mechanisms underlying the specific function of Sen1 at ncRNAs are poorly understood. Here, we identify a motif in an intrinsically disordered region of Sen1 that mimics the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II, and structurally characterize its recognition by the CTD-interacting domain of Nrd1, an RNA-binding protein that binds specific sequences in ncRNAs. In addition, we show that Sen1-dependent termination strictly requires CTD recognition by the N-terminal domain of Sen1. We provide evidence that the Sen1-CTD interaction does not promote initial Sen1 recruitment, but rather enhances Sen1 capacity to induce the release of paused RNAPII from the DNA. Our results shed light on the network of protein-protein interactions that control termination of non-coding transcription by Sen1.


Asunto(s)
ADN Helicasas/química , ADN Helicasas/metabolismo , ARN Helicasas/química , ARN Helicasas/metabolismo , ARN Polimerasa II/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Regulación Fúngica de la Expresión Génica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Dominios Proteicos , ARN de Hongos/metabolismo , ARN no Traducido/metabolismo , Saccharomyces cerevisiae/genética , Terminación de la Transcripción Genética
7.
Proc Natl Acad Sci U S A ; 114(42): 11133-11138, 2017 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-29073019

RESUMEN

RNA polymerase II contains a long C-terminal domain (CTD) that regulates interactions at the site of transcription. The CTD architecture remains poorly understood due to its low sequence complexity, dynamic phosphorylation patterns, and structural variability. We used integrative structural biology to visualize the architecture of the CTD in complex with Rtt103, a 3'-end RNA-processing and transcription termination factor. Rtt103 forms homodimers via its long coiled-coil domain and associates densely on the repetitive sequence of the phosphorylated CTD via its N-terminal CTD-interacting domain. The CTD-Rtt103 association opens the compact random coil structure of the CTD, leading to a beads-on-a-string topology in which the long rod-shaped Rtt103 dimers define the topological and mobility restraints of the entire assembly. These findings underpin the importance of the structural plasticity of the CTD, which is templated by a particular set of CTD-binding proteins.


Asunto(s)
ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química
8.
EMBO Rep ; 18(6): 906-913, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28468956

RESUMEN

Phosphorylation patterns of the C-terminal domain (CTD) of largest subunit of RNA polymerase II (called the CTD code) orchestrate the recruitment of RNA processing and transcription factors. Recent studies showed that not only serines and tyrosines but also threonines of the CTD can be phosphorylated with a number of functional consequences, including the interaction with yeast transcription termination factor, Rtt103p. Here, we report the solution structure of the Rtt103p CTD-interacting domain (CID) bound to Thr4 phosphorylated CTD, a poorly understood letter of the CTD code. The structure reveals a direct recognition of the phospho-Thr4 mark by Rtt103p CID and extensive interactions involving residues from three repeats of the CTD heptad. Intriguingly, Rtt103p's CID binds equally well Thr4 and Ser2 phosphorylated CTD A doubly phosphorylated CTD at Ser2 and Thr4 diminishes its binding affinity due to electrostatic repulsion. Our structural data suggest that the recruitment of a CID-containing CTD-binding factor may be coded by more than one letter of the CTD code.


Asunto(s)
ARN Polimerasa II/química , Proteínas de Saccharomyces cerevisiae/química , Treonina/química , Factores de Transcripción/química , Fosforilación , Unión Proteica , Proteínas Quinasas/metabolismo , Estructura Terciaria de Proteína , Proteolisis , ARN Polimerasa II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina/metabolismo , Treonina/metabolismo , Factores de Transcripción/metabolismo , Transcripción Genética , Tirosina/metabolismo
9.
Wiley Interdiscip Rev RNA ; 4(1): 1-16, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23042580

RESUMEN

RNA polymerase II (RNA pol II) is not only the fundamental enzyme for gene expression but also the central coordinator of co-transcriptional processing. RNA pol II associates with a large number of enzymes and protein/RNA-binding factors through its C-terminal domain (CTD) that consists of tandem repeats of the heptapeptide consensus Y(1)S(2)P(3) T(4)S(5)P(6)S(7). The CTD is posttranslationally modified, yielding specific patterns (often called the CTD code) that are recognized by appropriate factors in coordination with the transcription cycle. Serine phosphorylations are currently the best characterized elements of the CTD code; however, the roles of the proline isomerization and other modifications of the CTD remain poorly understood. The dynamic remodeling of the CTD modifications by kinases, phosphatases, isomerases, and other enzymes introduce changes in the CTD structure and dynamics. These changes serve as structural switches that spatially and temporally regulate the binding of processing factors. Recent structural studies of the CTD bound to various proteins have revealed the basic rules that govern the recognition of these switches and shed light on the roles of these protein factors in the assemblies of the processing machineries.


Asunto(s)
Procesamiento Proteico-Postraduccional , ARN Polimerasa II , Secuencia de Aminoácidos , Proteínas Portadoras/metabolismo , Metiltransferasas/metabolismo , Peptidilprolil Isomerasa de Interacción con NIMA , Isomerasa de Peptidilprolil/metabolismo , Fosfoproteínas Fosfatasas , Prolina/metabolismo , Estructura Terciaria de Proteína , ARN Polimerasa II/química , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae , Transcripción Genética
10.
PLoS One ; 7(3): e33482, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22432028

RESUMEN

Saccharomyces cerevisiae mitochondrial DNA polymerase (Mip1) contains a C-terminal extension (CTE) of 279 amino acid residues. The CTE is required for mitochondrial DNA maintenance in yeast but is absent in higher eukaryotes. Here we use recombinant Mip1 C-terminal deletion mutants to investigate functional importance of the CTE. We show that partial removal of the CTE in Mip1Δ216 results in strong preference for exonucleolytic degradation rather than DNA polymerization. This disbalance in exonuclease and polymerase activities is prominent at suboptimal dNTP concentrations and in the absence of correctly pairing nucleotide. Mip1Δ216 also displays reduced ability to synthesize DNA through double-stranded regions. Full removal of the CTE in Mip1Δ279 results in complete loss of Mip1 polymerase activity, however the mutant retains its exonuclease activity. These results allow us to propose that CTE functions as a part of Mip1 polymerase domain that stabilizes the substrate primer end at the polymerase active site, and is therefore required for efficient mitochondrial DNA replication in vivo.


Asunto(s)
ADN Polimerasa I/química , ADN Polimerasa I/metabolismo , Replicación del ADN , ADN de Hongos/metabolismo , ADN Mitocondrial/metabolismo , Mitocondrias/enzimología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , Secuencia de Aminoácidos , Biocatálisis , Exonucleasas/metabolismo , Datos de Secuencia Molecular , Proteínas Mutantes/química , Proteínas Mutantes/aislamiento & purificación , Proteínas Mutantes/metabolismo , Unión Proteica , Alineación de Secuencia , Eliminación de Secuencia , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...