Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Heliyon ; 10(6): e27869, 2024 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-38533060

RESUMEN

The present investigation focuses on assessing the water quality of groundwater surrounding brick kilns in the Jammu district of Jammu and Kashmir (J&K). At 43 different brick kiln sites in both north and south regions of Jammu, concentrations of heavy metals were measured using established techniques. The elements zinc, copper, iron, lead, cadmium, nickel, and manganese were analyzed utilizing an Atomic Absorption Spectrophotometer (AAS). The pollution load index value was consistently below unity across all sites, suggesting an absence of pollution and making the water suitable for consumption. The average concentrations, listed in ascending order, were found to be 0.38 mg/L for copper, 0.31 mg/L for zinc, 0.01 mg/L for iron, and 0.09 mg/L for manganese. Notably, concentrations of lead, cadmium, and nickel were found below the detectable levels. Evaluation of contamination factors revealed the sequence Cu > Fe > Zn > Mn, while the geo accumulation index followed the sequence Cu > Fe > Mn > Zn. Comparison of these findings with the established standards of World Health Organization and Bureau of Indian Standards indicated that the recorded ranges were within permissible limits. The study's outcomes suggest that heavy metal emissions from brick kilns may not significantly impact the quality of groundwater. Elevated copper levels found near brick kilns were likely to result from plumbing materials in the study area. Iron and manganese in groundwater seems to have geo-genic origin and not emission-related. This research represents a foundational step in examining groundwater contamination by heavy metals specifically in the neighborhood of brick kilns in Jammu district. It contributes to the establishment of a comprehensive database and serves as a reference point for future studies. Additionally, the study recommends regular monitoring of groundwater to ensure the maintenance of drinking water quality.

2.
Environ Res ; 241: 117669, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37980993

RESUMEN

The current work concentrates on the fabrication of Ga doped Co0.6Cu0.4Fe2O4 nanocatalysts via sol-gel auto-combustion (SGA) for the production of green and sustainable source of energy i.e., hydrogen through photocatalytic and electrocatalytic routes. Single-phased cubic crystal structure with Fd3m geometry was observed through XRD patterns. FESEM images show the aggregated and spherical shaped grains with distinct grain boundaries and average grain size of 1.04 and 1.39 µm for the Co0.6Cu0.4Fe2O4, and Co0.6Cu0.4Ga0.02Fe1.98O4 nanomaterials. Soft magnetic behaviour with a coercivity (Hc) and saturation magnetization (Ms) of 235.32-357.26 Oe and 54.65-61.11 emu/g was obtained for the produced nanomaterials. The estimation of photocatalytic nature for generating H2 was conducted using the sacrificial agents i.e., 0.128 M Na2S and 0.079 M Na2SO3. The analysis focused on measuring the maximum H2 generation was achieved by photocatalysts throughout three consecutive 4-h cycles. Out of all compositions, Co0.6Cu0.4Ga0.02Fe1.98O4 nanomaterial have the highest photocatalytic activity of 16.71 mmol gcat-1. However, the electrocatalytic behaviour of prepared Co0.6Cu0.4GaxFe2-xO4 (x = 0.00-0.03) electrocatalysts were determined for HER (Hydrogen evolution reaction) reaction. The overpotential values of Co0.6Cu0.4Fe2O4, Co0.6Cu0.4Ga0.01Fe1.99O4, Co0.6Cu0.4Ga0.02Fe1.98O4, and Co0.6Cu0.4Ga0.03Fe1.97O4 catalysts at 10 mA cm-2 were -0.81, -0.85, -1.03, and 1.21 V, correspondingly. Thus, at cathode current density of 10 mA/cm-2, an elevation in overpotential was noted, which indicates that the undoped Co0.6Cu0.4Fe2O4 (x = 0.00) electrocatalyst have remarkable electrocatalytic HER activity. Consequently, owing to photo/electro catalytic water splitting traits, the prepared catalysts are highly efficient for the green hydrogen generation.


Asunto(s)
Hidrógeno , Nanoestructuras , Catálisis , Electrodos , Fenotipo
3.
Environ Res ; 231(Pt 1): 116103, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37178745

RESUMEN

Copper and dysprosium doped NiFe2O4 magnetic nanomaterials, Ni1-xCuxDyyFe2-yO4 (x = y = 0.00, 0.01, 0.02, 0.03), was prepared by utilizing sol-gel auto-combustion approach to inspect the photodegradation of methylene blue (MB) pollutant and also, to perform the electrocatalytic water splitting and antibacterial studies. The XRD analysis reveal the growth of a single-phase spinel cubic structure for produced nanomaterials. The magnetic traits show an increasing trend in saturation magnetization (Ms) from 40.71 to 47.90 emu/g along with a decreasing behaviour of coercivity from 158.09 to 156.34 Oe at lower and higher Cu and Dy doping content (x = 0.0-0.01). The study of optical band gap values of copper and dysprosium-doped nickel nanomaterials decreased from 1.71 to 1.52 eV. This will increase the photocatalytic degradation of methylene blue pollutant from 88.57% to 93.67% under natural sunlight, respectively. These findings clearly show that under natural sunlight irradiation for 60 min, the produced N4 photocatalyst displays the greatest photocatalytic activity with a maximum removal percentage of 93.67%. The electrocatalytic characteristics of produced magnetic nanomaterials for both HER and OER were examined with a Calomel electrode taking as a reference in a 0.5 N H2SO4 and 0.1 N KOH electrolyte. The N4 electrode demonstrated considerable 10 and 0.024 mA/cm2 of current density, with onset potentials of 0.99 and 1.5 V for HER and OER and also, have tafel slopes of 58.04 and 295 mV/dec, respectively. The antibacterial activity for produced magnetic nanomaterials was examined against various bacteria (Bacillus subtilis, Staphylococcus aureus, S. typhi, and P. aeruginosa) in which N3 sample produced significant inhibition zone against gram-positive bacteria (Bacillus subtilis and Staphylococcus aureus) but no zone of inhibition against gram-negative bacteria (S. typhi and P. aeruginosa). With all these superior traits, the produced magnetic nanomaterials are highly valuable for the wastewater remediation, hydrogen evolution, and biological applications.


Asunto(s)
Cobre , Nanopartículas de Magnetita , Azul de Metileno/química , Disprosio , Antibacterianos/farmacología , Antibacterianos/química
4.
Environ Sci Pollut Res Int ; 30(28): 71527-71542, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33686599

RESUMEN

The interference of industrial effluents such as dyes, surfactants, metals, polycyclic aromatic hydrocarbons, and pharmaceutical waste has become a severe global problem for human health due to their carcinogenic, mutagenic, and toxic properties. Ferrites were considered promising photocatalysts for the degradation of organic and inorganic dyes. This study mainly focused on improving the photocatalytic performance of MnFe2O4 nanoferrites via doping of Zn2+ and La3+ ions. The zinc and lanthanum substituted Mn1-xZnxLayFe2-yO4 nanoferrites were prepared by the sol-gel auto-combustion technique for the degradation of organic textile malachite green dye (MGD) under the natural solar irradiation. The synthesized nanoferrites were investigated for their structural properties, surface morphology and elemental analysis, optical studies, magnetic properties, and photocatalytic performance by XRD, FESEM/EDX, FTIR/Raman spectrum, vibrating sample magnetometer, and UV-visible spectrophotometer, respectively. The substitution of zinc and lanthanum improved the photocatalytic efficiency of nanoferrites, and about 96% of MGD was degraded by Mn0.97Zn0.03La0.04Fe1.96O4 after 60 min of irradiation. The results showed the pseudo-first-order kinetics for dye degradation using undoped and Zn/La-doped MnFe2O4 photocatalysts.


Asunto(s)
Colorantes , Lantano , Humanos , Agua , Zinc , Catálisis
5.
Chemosphere ; 294: 133706, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35066082

RESUMEN

This study aims at manufacturing Ce3+/Ni2+ ions doped Mg nanoferrites by the sol-gel method for the photocatalytic degradation of rhodamine B and crystal violet pollutants under visible natural sunlight. The particle size of synthesized nanoferrites was calculated through XRD, Hall-William plots, and TEM analysis, which perfectly agree with each other. FTIR study investigated the existence of stretching vibrations in M - O (metal-oxygen) complexes at the tetrahedral (A-site) and octahedral sites (B-site). The Raman spectra of synthesized nanophotocatalysts show the presence of four vibrational modes (Eg + 2T2g + A1g), providing suitable information of occupancy of Mg2+, Ce3+, Ni2+, and Fe3+ ions at the interstitial sites of undoped and Ce3+/Ni2+ doped MgFe2O4 crystal structure. The synthesized MGF3 nanophotocatalyst performs well with degradation of 97.674% crystal violet (CV) and 90.05% rhodamine B (RhB) under natural sunlight in 60 min. The experimental results showed that doped MgFe2O4 nanoferrites have a high tendency to photodegrade the RhB and CV dyes in an aqueous form. The pseudo-first-order equation reflects the best photocatalytic process kinetics and studied the feasibility of RhB and CV dyes adsorption on the doped and undoped MgFe2O4 nanoferrites. The results show good support for adsorption by the spontaneous photodegradation process. The excellent photocatalytic activity of synthesized nanoferrites under natural sunlight verifies them as a potential candidate for the photodegradation of organic dyes. Finally, the antibacterial activity of magnetic nanoferrites was examined against S. aureus and E. Coli. The studies demonstrated that synthesized magnetic nanoferrites were more effective against S. aureus.


Asunto(s)
Contaminantes Ambientales , Violeta de Genciana , Catálisis , Escherichia coli , Fotólisis , Rodaminas , Staphylococcus aureus , Luz Solar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...