Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
New Phytol ; 241(2): 811-826, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38044751

RESUMEN

Diatoms are eukaryotic microalgae responsible for nearly half of the marine productivity. RNA interference (RNAi) is a mechanism of regulation of gene expression mediated by small RNAs (sRNAs) processed by the endoribonuclease Dicer (DCR). To date, the mechanism and physiological role of RNAi in diatoms are unknown. We mined diatom genomes and transcriptomes for key RNAi effectors and retraced their phylogenetic history. We generated DCR knockout lines in the model diatom species Phaeodactylum tricornutum and analyzed their mRNA and sRNA populations, repression-associated histone marks, and acclimatory response to nitrogen starvation. Diatoms presented a diversification of key RNAi effectors whose distribution across species suggests the presence of distinct RNAi pathways. P. tricornutum DCR was found to process 26-31-nt-long double-stranded sRNAs originating mostly from transposons covered by repression-associated epigenetic marks. In parallel, P. tricornutum DCR was necessary for the maintenance of the repression-associated histone marks H3K9me2/3 and H3K27me3. Finally, PtDCR-KO lines presented a compromised recovery post nitrogen starvation suggesting a role for P. tricornutum DCR in the acclimation to nutrient stress. Our study characterized the molecular function of the single DCR homolog of P. tricornutum suggesting an association between RNAi and heterochromatin maintenance in this model diatom species.


Asunto(s)
Diatomeas , Diatomeas/metabolismo , Filogenia , Genoma , ARN/metabolismo , Nitrógeno/metabolismo
2.
J Phycol ; 59(6): 1114-1122, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37975560

RESUMEN

Diatoms are prominent and highly diverse microalgae in aquatic environments. Compared with other diatom species, Phaeodactylum tricornutum is an "atypical diatom" displaying three different morphotypes and lacking the usual silica shell. Despite being of limited ecological relevance, its ease of growth in the laboratory and well-known physiology, alongside the steady increase in genome-enabled information coupled with effective tools for manipulating gene expression, have meant it has gained increased recognition as a powerful experimental model for molecular research on diatoms. We here present a brief overview of how over the last 25 years P. tricornutum has contributed to the unveiling of fundamental aspects of diatom biology, while also emerging as a new tool for algal process engineering and synthetic biology.


Asunto(s)
Diatomeas , Microalgas , Diatomeas/genética , Diatomeas/metabolismo , Genoma , Microalgas/genética , Biología Sintética
3.
Plant Physiol ; 188(1): 509-525, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34595530

RESUMEN

Light harvesting is regulated by a process triggered by the acidification of the thylakoid lumen, known as nonphotochemical "energy-dependent quenching" (qE). In diatoms, qE is controlled by the light-harvesting complex (LHC) protein LHCX1, while the LHC stress-related (LHCSR) and photosystem II subunit S proteins are essential for green algae and plants, respectively. Here, we report a biochemical and molecular characterization of LHCX1 to investigate its role in qE. We found that, when grown under intermittent light, Phaeodactylum tricornutum forms very large qE, due to LHCX1 constitutive upregulation. This "super qE" is abolished in LHCX1 knockout mutants. Biochemical and spectroscopic analyses of LHCX1 reveal that this protein might differ in the character of binding pigments relative to the major pool of light-harvesting antenna proteins. The possibility of transient pigment binding or not binding pigments at all is discussed. Targeted mutagenesis of putative protonatable residues (D95 and E205) in transgenic P. tricornutum lines does not alter qE capacity, showing that they are not involved in sensing lumen pH, differently from residues conserved in LHCSR3. Our results suggest functional divergence between LHCX1 and LHCSR3 in qE modulation. We propose that LHCX1 evolved independently to facilitate dynamic tracking of light fluctuations in turbulent waters. The evolution of LHCX(-like) proteins in organisms with secondary red plastids, such as diatoms, might have conferred a selective advantage in the control of dynamic photoprotection, ultimately resulting in their ecological success.


Asunto(s)
Adaptación Fisiológica/genética , Diatomeas/genética , Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/genética , Complejos de Proteína Captadores de Luz/metabolismo , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
4.
C R Biol ; 345(2): 15-38, 2022 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-36847462

RESUMEN

Microalgae are prominent aquatic organisms, responsible for about half of the photosynthetic activity on Earth. Over the past two decades, breakthroughs in genomics and ecosystem biology, as well as the development of genetic resources in model species, have redrawn the boundaries of our knowledge on the relevance of these microbes in global ecosystems. However, considering their vast biodiversity and complex evolutionary history, our comprehension of algal biology remains limited. As algae rely on light, both as their main source of energy and for information about their environment, we focus here on photosynthesis, photoperception, and chloroplast biogenesis in the green alga Chlamydomonas reinhardtii and marine diatoms. We describe how the studies of light-driven processes are key to assessing functional biodiversity in evolutionary distant microalgae. We also emphasize that integration of laboratory and environmental studies, and dialogues between different scientific communities are both timely and essential to understand the life of phototrophs in complex ecosystems and to properly assess the consequences of environmental changes on aquatic environments globally.


Les microalgues, organismes aquatiques majeurs, sont responsables de la moitié de l'activité photosynthétique planétaire. La lumière représente pour les microalgues une source d'énergie ainsi que d'informations sur leur environnement. Ces 20 dernières années, les progrès en génomique et biologie des écosystèmes et la disponibilité de ressources génétiques pour de nouvelles espèces modèles ont permis d'apprécier leur importance dans les écosystèmes globaux. Néanmoins, du fait de leur grande diversité et de leur histoire évolutive complexe, notre compréhension de la biologie des microalgues reste limitée. Nous nous concentrons ici sur la photosynthèse, la photoperception, et la biogenèse des plastes chez l'algue verte Chlamydomonas reinhardtii et les diatomées marines. Nous décrivons comment l'étude des processus gouvernés par la lumière ouvre de nouvelles perspectives pour l'étude de la biodiversité fonctionnelle des microalgues. Nous soulignons combien seule l'intégration d'études en laboratoire et en contexte environnemental et le dialogue entre les communautés scientifiques concernées permettront de comprendre la vie de ces phototrophes dans des écosystèmes complexes, et d'évaluer correctement les conséquences des changements environnementaux sur les milieux aquatiques.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Ecosistema , Fotosíntesis , Biodiversidad , Chlamydomonas reinhardtii/genética
5.
Plant Cell ; 32(3): 547-572, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31852772

RESUMEN

Diatoms are the world's most diverse group of algae, comprising at least 100,000 species. Contributing ∼20% of annual global carbon fixation, they underpin major aquatic food webs and drive global biogeochemical cycles. Over the past two decades, Thalassiosira pseudonana and Phaeodactylum tricornutum have become the most important model systems for diatom molecular research, ranging from cell biology to ecophysiology, due to their rapid growth rates, small genomes, and the cumulative wealth of associated genetic resources. To explore the evolutionary divergence of diatoms, additional model species are emerging, such as Fragilariopsis cylindrus and Pseudo-nitzschia multistriata Here, we describe how functional genomics and reverse genetics have contributed to our understanding of this important class of microalgae in the context of evolution, cell biology, and metabolic adaptations. Our review will also highlight promising areas of investigation into the diversity of these photosynthetic organisms, including the discovery of new molecular pathways governing the life of secondary plastid-bearing organisms in aquatic environments.


Asunto(s)
Biodiversidad , Diatomeas/fisiología , Modelos Biológicos , Fitoplancton/fisiología , Diatomeas/genética , Genómica , Filogenia , Fitoplancton/genética
6.
Plant Cell Rep ; 37(10): 1401-1408, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30167805

RESUMEN

Diatoms are major components of phytoplankton and play a key role in the ecology of aquatic ecosystems. These algae are of great scientific importance for a wide variety of research areas, ranging from marine ecology and oceanography to biotechnology. During the last 20 years, the availability of genomic information on selected diatom species and a substantial progress in genetic manipulation, strongly contributed to establishing diatoms as molecular model organisms for marine biology research. Recently, tailored TALEN endonucleases and the CRISPR/Cas9 system were utilized in diatoms, allowing targeted genetic modifications and the generation of knockout strains. These approaches are extremely valuable for diatom research because breeding, forward genetic screens by random insertion, and chemical mutagenesis are not applicable to the available model species Phaeodactylum tricornutum and Thalassiosira pseudonana, which do not cross sexually in the lab. Here, we provide an overview of the genetic toolbox that is currently available for performing stable genetic modifications in diatoms. We also discuss novel challenges that need to be addressed to fully exploit the potential of these technologies for the characterization of diatom biology and for metabolic engineering.


Asunto(s)
Diatomeas/genética , Edición Génica/métodos , Sistemas CRISPR-Cas , Genoma , Nucleasas de los Efectores Tipo Activadores de la Transcripción/genética , Nucleasas de los Efectores Tipo Activadores de la Transcripción/metabolismo
7.
Plant Physiol ; 177(3): 953-965, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29773581

RESUMEN

Marine diatoms are prominent phytoplankton organisms that perform photosynthesis in extremely variable environments. Diatoms possess a strong ability to dissipate excess absorbed energy as heat via nonphotochemical quenching (NPQ). This process relies on changes in carotenoid pigment composition (xanthophyll cycle) and on specific members of the light-harvesting complex family specialized in photoprotection (LHCXs), which potentially act as NPQ effectors. However, the link between light stress, NPQ, and the existence of different LHCX isoforms is not understood in these organisms. Using picosecond fluorescence analysis, we observed two types of NPQ in the pennate diatom Phaeodactylum tricornutum that were dependent on light conditions. Short exposure of low-light-acclimated cells to high light triggers the onset of energy quenching close to the core of photosystem II, while prolonged light stress activates NPQ in the antenna. Biochemical analysis indicated a link between the changes in the NPQ site/mechanism and the induction of different LHCX isoforms, which accumulate either in the antenna complexes or in the core complex. By comparing the responses of wild-type cells and transgenic lines with a reduced expression of the major LHCX isoform, LHCX1, we conclude that core complex-associated NPQ is more effective in photoprotection than is the antenna complex. Overall, our data clarify the complex molecular scenario of light responses in diatoms and provide a rationale for the existence of a degenerate family of LHCX proteins in these algae.


Asunto(s)
Diatomeas/fisiología , Complejos de Proteína Captadores de Luz/metabolismo , Aclimatación , Clorofila/metabolismo , Cloroplastos/metabolismo , Diatomeas/citología , Fluorescencia , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Luz , Complejos de Proteína Captadores de Luz/genética , Organismos Modificados Genéticamente , Procesos Fotoquímicos , Complejo de Proteína del Fotosistema II/genética , Complejo de Proteína del Fotosistema II/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
8.
Curr Opin Plant Biol ; 37: 70-77, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28456112

RESUMEN

Marine eukaryotic phytoplankton are major contributors to global primary production. To adapt and thrive in the oceans, phytoplankton relies on a variety of light-regulated responses and light-acclimation capacities probably driven by sophisticated photoregulatory mechanisms. A plethora of photoreceptor-like sequences from marine microalgae have been identified in omics approaches. Initial studies have revealed that some algal photoreceptors are similar to those known in plants. In addition, new variants with different spectral tuning and algal-specific light sensors have also been found, changing current views and perspectives on how photoreceptor structure and function have diversified in phototrophs experiencing different environmental conditions.


Asunto(s)
Luz , Microalgas/metabolismo , Microalgas/efectos de la radiación , Fotorreceptores de Plantas/genética , Fotorreceptores de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
9.
J Exp Bot ; 67(13): 3939-51, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27225826

RESUMEN

Diatoms are phytoplanktonic organisms that grow successfully in the ocean where light conditions are highly variable. Studies of the molecular mechanisms of light acclimation in the marine diatom Phaeodactylum tricornutum show that carotenoid de-epoxidation enzymes and LHCX1, a member of the light-harvesting protein family, both contribute to dissipate excess light energy through non-photochemical quenching (NPQ). In this study, we investigate the role of the other members of the LHCX family in diatom stress responses. Our analysis of available genomic data shows that the presence of multiple LHCX genes is a conserved feature of diatom species living in different ecological niches. Moreover, an analysis of the levels of four P. tricornutum LHCX transcripts in relation to protein expression and photosynthetic activity indicates that LHCXs are differentially regulated under different light intensities and nutrient starvation, mostly modulating NPQ capacity. We conclude that multiple abiotic stress signals converge to regulate the LHCX content of cells, providing a way to fine-tune light harvesting and photoprotection. Moreover, our data indicate that the expansion of the LHCX gene family reflects functional diversification of its members which could benefit cells responding to highly variable ocean environments.


Asunto(s)
Proteínas Algáceas/genética , Diatomeas/genética , Regulación de la Expresión Génica , Complejos de Proteína Captadores de Luz/genética , Fitoplancton/genética , Transducción de Señal , Proteínas Algáceas/metabolismo , Diatomeas/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis , Fitoplancton/metabolismo
10.
Plant Cell ; 28(3): 616-28, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26941092

RESUMEN

The absorption of visible light in aquatic environments has led to the common assumption that aquatic organisms sense and adapt to penetrative blue/green light wavelengths but show little or no response to the more attenuated red/far-red wavelengths. Here, we show that two marine diatom species, Phaeodactylum tricornutum and Thalassiosira pseudonana, possess a bona fide red/far-red light sensing phytochrome (DPH) that uses biliverdin as a chromophore and displays accentuated red-shifted absorbance peaks compared with other characterized plant and algal phytochromes. Exposure to both red and far-red light causes changes in gene expression in P. tricornutum, and the responses to far-red light disappear in DPH knockout cells, demonstrating that P. tricornutum DPH mediates far-red light signaling. The identification of DPH genes in diverse diatom species widely distributed along the water column further emphasizes the ecological significance of far-red light sensing, raising questions about the sources of far-red light. Our analyses indicate that, although far-red wavelengths from sunlight are only detectable at the ocean surface, chlorophyll fluorescence and Raman scattering can generate red/far-red photons in deeper layers. This study opens up novel perspectives on phytochrome-mediated far-red light signaling in the ocean and on the light sensing and adaptive capabilities of marine phototrophs.


Asunto(s)
Diatomeas/fisiología , Fototransducción/efectos de la radiación , Fitocromo/efectos de la radiación , Plantas/efectos de la radiación , Adaptación Fisiológica , Clorofila/metabolismo , Diatomeas/efectos de la radiación , Océanos y Mares , Espectrometría Raman , Luz Solar
11.
J Plant Physiol ; 172: 42-54, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25087009

RESUMEN

Light is essential for the life of photosynthetic organisms as it is a source of energy and information from the environment. Light excess or limitation can be a cause of stress however. Photosynthetic organisms exhibit sophisticated mechanisms to adjust their physiology and growth to the local environmental light conditions. The cryptochrome/photolyase family (CPF) is composed of flavoproteins with similar structures that display a variety of light-dependent functions. This family encompasses photolyases, blue-light activated enzymes that repair ultraviolet-light induced DNA damage, and cryptochromes, known for their photoreceptor functions in terrestrial plants. For this review, we searched extensively for CPFs in the available genome databases to trace the distribution and evolution of this protein family in photosynthetic organisms. By merging molecular data with current knowledge from the functional characterization of CPFs from terrestrial and aquatic organisms, we discuss their roles in (i) photoperception, (ii) biological rhythm regulation and (iii) light-induced stress responses. We also explore their possible implication in light-related physiological acclimation and their distribution in phototrophs living in different environments. The outcome of this structure-function analysis reconstructs the complex scenarios in which CPFs have evolved, as highlighted by the novel functions and biochemical properties of the most recently described family members in algae.


Asunto(s)
Desoxirribodipirimidina Fotoliasa/genética , Evolución Molecular , Flavoproteínas/genética , Fenómenos Fisiológicos de las Plantas , Criptocromos/genética , Criptocromos/metabolismo , Desoxirribodipirimidina Fotoliasa/metabolismo , Flavoproteínas/metabolismo , Luz , Fotosíntesis
12.
Plant Physiol ; 156(3): 1556-64, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21576511

RESUMEN

RNA-silencing mechanisms control many aspects of gene regulation including the detection and degradation of viral RNA through the action of, among others, Dicer-like and Argonaute (AGO) proteins. However, the extent to which RNA silencing restricts virus host range has been difficult to separate from other factors that can affect virus-plant compatibility. Here we show that Potato virus X (PVX) can infect Arabidopsis (Arabidopsis thaliana), which is normally a nonhost for PVX, if coinfected with a second virus, Pepper ringspot virus. Here we show that the pepper ringspot virus 12K protein functions as a suppressor of silencing that appears to enable PVX to infect Arabidopsis. We also show that PVX is able to infect Arabidopsis Dicer-like mutants, indicating that RNA silencing is responsible for Arabidopsis nonhost resistance to PVX. Furthermore, we find that restriction of PVX on Arabidopsis also depends on AGO2, suggesting that this AGO protein has evolved to specialize in antiviral defenses.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/inmunología , Arabidopsis/virología , Potexvirus/fisiología , Interferencia de ARN , Proteínas de Unión al ARN/metabolismo , Proteínas Argonautas , Genes Supresores , Inmunidad Innata/inmunología , Datos de Secuencia Molecular , Peso Molecular , Mutación/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/virología , Proteínas Virales/metabolismo
13.
Plant Physiol ; 156(3): 1548-55, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21606315

RESUMEN

ARGONAUTE proteins (AGOs) are known to be key components of the RNA silencing mechanism in eukaryotes that, among other functions, serves to protect against viral invaders. Higher plants encode at least 10 individual AGOs yet the role played by many in RNA silencing-related antiviral defense is largely unknown, except for reports that AGO1, AGO2, and AGO7 play an antiviral role in Arabidopsis (Arabidopsis thaliana). In the plant virus model host Nicotiana benthamiana, Tomato bushy stunt virus (TBSV) P19 suppressor mutants are very susceptible to RNA silencing. Here, we report that a N. benthamiana AGO (NbAGO) with similarity to Arabidopsis AGO2, is involved in antiviral defense against TBSV. The activity of this NbAGO2 is shown to be directly associated with anti-TBSV RNA silencing, while its inactivation does not influence silencing of transiently expressed transgenes. Thus, the role of NbAGO2 might be primarily for antiviral defense.


Asunto(s)
Nicotiana/genética , Nicotiana/virología , Proteínas de Plantas/metabolismo , Interferencia de ARN , Tombusvirus/fisiología , Secuencia de Aminoácidos , Genes Supresores , Datos de Secuencia Molecular , Proteínas de Plantas/química , Alineación de Secuencia , Especificidad de la Especie
14.
PLoS Pathog ; 5(8): e1000564, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19714238

RESUMEN

Plant NB-LRR proteins confer robust protection against microbes and metazoan parasites by recognizing pathogen-derived avirulence (Avr) proteins that are delivered to the host cytoplasm. Microbial Avr proteins usually function as virulence factors in compatible interactions; however, little is known about the types of metazoan proteins recognized by NB-LRR proteins and their relationship with virulence. In this report, we demonstrate that the secreted protein RBP-1 from the potato cyst nematode Globodera pallida elicits defense responses, including cell death typical of a hypersensitive response (HR), through the NB-LRR protein Gpa2. Gp-Rbp-1 variants from G. pallida populations both virulent and avirulent to Gpa2 demonstrated a high degree of polymorphism, with positive selection detected at numerous sites. All Gp-RBP-1 protein variants from an avirulent population were recognized by Gpa2, whereas virulent populations possessed Gp-RBP-1 protein variants both recognized and non-recognized by Gpa2. Recognition of Gp-RBP-1 by Gpa2 correlated to a single amino acid polymorphism at position 187 in the Gp-RBP-1 SPRY domain. Gp-RBP-1 expressed from Potato virus X elicited Gpa2-mediated defenses that required Ran GTPase-activating protein 2 (RanGAP2), a protein known to interact with the Gpa2 N terminus. Tethering RanGAP2 and Gp-RBP-1 variants via fusion proteins resulted in an enhancement of Gpa2-mediated responses. However, activation of Gpa2 was still dependent on the recognition specificity conferred by amino acid 187 and the Gpa2 LRR domain. These results suggest a two-tiered process wherein RanGAP2 mediates an initial interaction with pathogen-delivered Gp-RBP-1 proteins but where the Gpa2 LRR determines which of these interactions will be productive.


Asunto(s)
Proteínas Activadoras de GTPasa/metabolismo , Proteínas de Plantas/metabolismo , Tylenchoidea/metabolismo , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Muerte Celular/fisiología , Proteínas del Helminto/genética , Proteínas del Helminto/metabolismo , Hipersensibilidad , Datos de Secuencia Molecular , Hojas de la Planta/metabolismo , Potexvirus/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Selección Genética , Alineación de Secuencia , Nicotiana/metabolismo , Tylenchoidea/genética
15.
Photosynth Res ; 100(2): 97-105, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19452262

RESUMEN

In aerobic anoxygenic phototrophs, oxygen is required for both the formation of the photosynthetic apparatus and an efficient cyclic electron transfer. Mutants of Bradyrhizobium sp. ORS278 affected in photosystem synthesis were selected by a bacteriochlorophyll fluorescence-based screening. Out of the 9,600 mutants of a random Tn5 insertion library, 50 clones, corresponding to insertions in 28 different genes, present a difference in fluorescence intensity compared to the WT. Besides enzymes and regulators known to be involved in photosystem synthesis, 14 novel components of the photosynthesis control are identified. Among them, two genes, hsIU and hsIV, encode components of a protein degradation complex, probably linked to the renewal of photosystem, an important issue in Bradyrhizobia which have to deal with harmful reactive oxygen species. The presence of homologs in non-photosynthetic bacteria for most of the regulatory genes identified during study suggests that they could be global regulators, as the RegA-RegB system.


Asunto(s)
Bradyrhizobium/genética , Bradyrhizobium/metabolismo , Genes Bacterianos , Mutación/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/biosíntesis , Bacterioclorofilas/metabolismo , Bradyrhizobium/efectos de la radiación , Células Clonales , Luz , Fenotipo , Fotosíntesis/genética , Fotosíntesis/efectos de la radiación , Espectrometría de Fluorescencia
16.
J Bacteriol ; 190(17): 5824-31, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18606738

RESUMEN

The recent sequence analysis of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain BTAi1 revealed the unexpected presence of a pucBA operon encoding the apoproteins of peripheral light-harvesting (LH) complexes. This pucBA operon is found close to a bacteriophytochrome gene (BphP3(B BTAi1)) and a two-component transcriptional regulator gene (TF(BTAi1) gene). In this study, we show that BphP3(B BTAi1) acts as a bona fide bacteriophytochrome and controls, according to light conditions, the expression of the pucBA operon found in its vicinity. This light regulatory pathway is very similar to the one previously described for chromo-BphP4(Rp) in Rhodopseudomonas palustris and conducts the synthesis of a peripheral LH complex. This LH complex presents a single absorption band at low temperature, centered at 803 nm. Fluorescence emission analysis of intact cells indicates that this peripheral LH complex does not act as an efficient light antenna. One putative function of this LH complex could be to evacuate excess light energy in order to protect Bradyrhizobium strain BTAi1, an aerobic anoxygenic photosynthetic bacterium, against photooxidative damage during photosynthesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Bradyrhizobium/metabolismo , Complejos de Proteína Captadores de Luz/metabolismo , Fotosíntesis/fisiología , Aerobiosis , Proteínas Bacterianas/clasificación , Proteínas Bacterianas/genética , Bradyrhizobium/genética , Histidina Quinasa , Complejos de Proteína Captadores de Luz/genética , Operón/genética , Fenotipo , Fotosíntesis/genética , Filogenia , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
17.
EMBO J ; 26(14): 3322-31, 2007 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-17581629

RESUMEN

Bacteriophytochromes are red/far-red photoreceptors that bacteria use to mediate sensory responses to their light environment. Here, we show that the photosynthetic bacterium Rhodopseudomonas palustris has two distinct types of bacteriophytochrome-related protein (RpBphP4) depending upon the strain considered. The first type binds the chromophore biliverdin and acts as a light-sensitive kinase, thus behaving as a bona fide bacteriophytochrome. However, in most strains, RpBphP4 does not to bind this chromophore. This loss of light sensing is replaced by a redox-sensing ability coupled to kinase activity. Phylogenetic analysis is consistent with an evolutionary scenario, where a bacteriophytochrome ancestor has adapted from light to redox sensing. Both types of RpBphP4 regulate the synthesis of light harvesting (LH2) complexes according to the light or redox conditions, respectively. They modulate the affinity of a transcription factor binding to the promoter regions of LH2 complex genes by controlling its phosphorylation status. This is the first complete description of a bacteriophytochrome signal transduction pathway involving a two-component system.


Asunto(s)
Proteínas Bacterianas/metabolismo , Evolución Molecular , Luz , Rhodopseudomonas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Complejos de Proteína Captadores de Luz/biosíntesis , Complejos de Proteína Captadores de Luz/efectos de los fármacos , Complejos de Proteína Captadores de Luz/efectos de la radiación , Modelos Biológicos , Datos de Secuencia Molecular , Oxidación-Reducción/efectos de la radiación , Oxígeno/farmacología , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Filogenia , Fitocromo/química , Fitocromo/genética , Fitocromo/aislamiento & purificación , Fitocromo/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Rhodopseudomonas/efectos de los fármacos , Rhodopseudomonas/genética , Rhodopseudomonas/efectos de la radiación , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo
18.
Science ; 316(5829): 1307-12, 2007 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-17540897

RESUMEN

Leguminous plants (such as peas and soybeans) and rhizobial soil bacteria are symbiotic partners that communicate through molecular signaling pathways, resulting in the formation of nodules on legume roots and occasionally stems that house nitrogen-fixing bacteria. Nodule formation has been assumed to be exclusively initiated by the binding of bacterial, host-specific lipochito-oligosaccharidic Nod factors, encoded by the nodABC genes, to kinase-like receptors of the plant. Here we show by complete genome sequencing of two symbiotic, photosynthetic, Bradyrhizobium strains, BTAi1 and ORS278, that canonical nodABC genes and typical lipochito-oligosaccharidic Nod factors are not required for symbiosis in some legumes. Mutational analyses indicated that these unique rhizobia use an alternative pathway to initiate symbioses, where a purine derivative may play a key role in triggering nodule formation.


Asunto(s)
Bradyrhizobium/genética , Bradyrhizobium/fisiología , Fabaceae/microbiología , Tallos de la Planta/microbiología , Nódulos de las Raíces de las Plantas/fisiología , Simbiosis , Aciltransferasas/genética , Aciltransferasas/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bradyrhizobium/crecimiento & desarrollo , Citocininas/metabolismo , Genes Bacterianos , Genoma Bacteriano , Genómica , Lipopolisacáridos/metabolismo , Datos de Secuencia Molecular , Mutación , N-Acetilglucosaminiltransferasas/genética , N-Acetilglucosaminiltransferasas/metabolismo , Fotosíntesis , Raíces de Plantas/microbiología , Purinas/biosíntesis , Nódulos de las Raíces de las Plantas/microbiología , Transducción de Señal
19.
J Biol Chem ; 282(10): 7320-8, 2007 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-17218312

RESUMEN

Bacteriophytochromes are phytochrome-like proteins that mediate photosensory responses in various bacteria according to their light environment. The genome of the photosynthetic and plant-symbiotic Bradyrhizobium sp. strain ORS278 revealed the presence of a genomic island acquired by lateral transfer harboring a bacteriophytochrome gene, BrBphP3.ORS278, and genes involved in the synthesis of phycocyanobilin and gas vesicles. The corresponding protein BrBphP3.ORS278 is phylogenetically distant from the other (bacterio)phytochromes described thus far and displays a series of unusual properties. It binds phycocyanobilin as a chromophore, a unique feature for a bacteriophytochrome. Moreover, its C-terminal region is short and displays no homology with any known functional domain. Its dark-adapted state absorbs maximally around 610 nm, an unusually short wavelength for (bacterio)phytochromes. This form is designated as Po for orange-absorbing form. Upon illumination, a photo-reversible switch occurs between the Po form and a red (670 nm)-absorbing form (Pr), which rapidly backreacts in the dark. Because of this instability, illumination results in a mixture of the Po and Pr states in proportions that depend on the intensity. These uncommon features suggest that BrBphP3.ORS278 could be fitted to measure light intensity rather than color.


Asunto(s)
Proteínas Bacterianas/genética , Bradyrhizobium/genética , Transferencia de Gen Horizontal , Fitocromo/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Fluorescencia , Datos de Secuencia Molecular , Ficobilinas/metabolismo , Ficocianina/metabolismo , Fitocromo/química , Temperatura
20.
Mol Microbiol ; 57(1): 17-26, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15948946

RESUMEN

Purple bacteria control the level of expression and the composition of their photosystem according to light and redox conditions. This control involves several regulatory systems that have been now well characterized. Among them, the PpsR regulator plays a central role, because it directly or indirectly controls the synthesis of all of the different components of the photosystem. In this review, we report our knowledge of the PpsR protein, highlighting the diversity of its mode of action and focusing on the proteins identified in four model purple bacteria (Rhodobacter capsulatus, Rhodobacter sphaeroides, Rubrivivax gelatinosus, Bradyrhizobium ORS278). This regulator exhibits unique regulatory features in each bacterium: it can activate and/or repress the expression of photosynthesis genes, its activity can be modulated or not by the redox conditions, it can interact with other specific regulators and therefore be involved differently in light and/or redox regulatory circuits.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Fotosíntesis/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Proteínas Bacterianas/química , Bradyrhizobium/genética , Bradyrhizobium/fisiología , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Luz , Proteobacteria/genética , Proteobacteria/fisiología , Proteínas Represoras/química , Rhodobacter/genética , Rhodobacter/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...