Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 12(1): 12420, 2022 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-35859155

RESUMEN

In neuroblastoma, MYCN amplification and 11q-deletion are important, although incomplete, markers of high-risk disease. It is therefore relevant to characterize additional alterations that can function as prognostic and/or predictive markers. Using SNP-microarrays, a group of neuroblastoma patients showing amplification of one or multiple 12q loci was identified. Two loci containing CDK4 and MDM2 were commonly co-amplified, although amplification of either locus in the absence of the other was observed. Pharmacological inhibition of CDK4/6 with ribociclib or abemaciclib decreased proliferation in a broad set of neuroblastoma cell lines, including CDK4/MDM2-amplified, whereas MDM2 inhibition by Nutlin-3a was only effective in p53wild-type cells. Combined CDK4/MDM2 targeting had an additive effect in p53wild-type cell lines, while no or negative additive effect was observed in p53mutated cells. Most 12q-amplified primary tumors were of abdominal origin, including those of intrarenal origin initially suspected of being Wilms' tumor. An atypical metastatic pattern was also observed with low degree of bone marrow involvement, favoring other sites such as the lungs. Here we present detailed biological data of an aggressive neuroblastoma subgroup hallmarked by 12q amplification and atypical clinical presentation for which our in vitro studies indicate that CDK4 and/or MDM2 inhibition also could be beneficial.


Asunto(s)
Neuroblastoma , Proteínas Proto-Oncogénicas c-mdm2 , Quinasa 4 Dependiente de la Ciclina/genética , Quinasa 4 Dependiente de la Ciclina/metabolismo , Amplificación de Genes , Humanos , Neuroblastoma/patología , Pronóstico , Proteínas Proto-Oncogénicas c-mdm2/genética , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
2.
Cell Rep ; 32(12): 108171, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32966799

RESUMEN

High-risk neuroblastomas typically display an undifferentiated or poorly differentiated morphology. It is therefore vital to understand molecular mechanisms that block the differentiation process. We identify an important role for oncogenic ALK-ERK1/2-SP1 signaling in the maintenance of undifferentiated neural crest-derived progenitors through the repression of DLG2, a candidate tumor suppressor gene in neuroblastoma. DLG2 is expressed in the murine "bridge signature" that represents the transcriptional transition state when neural crest cells or Schwann cell precursors differentiate to chromaffin cells of the adrenal gland. We show that the restoration of DLG2 expression spontaneously drives neuroblastoma cell differentiation, highlighting the importance of DLG2 in this process. These findings are supported by genetic analyses of high-risk 11q deletion neuroblastomas, which identified genetic lesions in the DLG2 gene. Our data also suggest that further exploration of other bridge genes may help elucidate the mechanisms underlying the differentiation of NC-derived progenitors and their contribution to neuroblastomas.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Diferenciación Celular , Deleción Cromosómica , Cromosomas Humanos Par 11/genética , Guanilato-Quinasas/genética , Neuroblastoma/genética , Neuroblastoma/patología , Proteínas Supresoras de Tumor/genética , Adrenérgicos/metabolismo , Animales , Carcinogénesis/efectos de los fármacos , Carcinogénesis/genética , Carcinogénesis/patología , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Proliferación Celular/genética , Células Cromafines/efectos de los fármacos , Células Cromafines/metabolismo , Células Cromafines/patología , Femenino , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Guanilato-Quinasas/metabolismo , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos BALB C , Factor de Crecimiento Nervioso/farmacología , Neuronas/metabolismo , Neuronas/patología , Fenotipo , Pronóstico , Células de Schwann/efectos de los fármacos , Células de Schwann/metabolismo , Células de Schwann/patología , Factor de Transcripción Sp1/metabolismo , Transcripción Genética/efectos de los fármacos , Resultado del Tratamiento , Tretinoina/farmacología , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba/efectos de los fármacos
3.
Genes Chromosomes Cancer ; 59(1): 50-57, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31340081

RESUMEN

Gain of chromosome arm 2p is a previously described entity in neuroblastoma (NB). This genomic address is home to two important oncogenes in NB-MYCN and anaplastic lymphoma kinase (ALK). MYCN amplification is a critical prognostic factor coupled with poor prognosis in NB. Mutation of the ALK receptor tyrosine kinase has been described in both somatic and familial NB. Here, ALK activation occurs in the context of the full-length receptor, exemplified by activating point mutations in NB. ALK overexpression and activation, in the absence of genetic mutation has also been described in NB. In addition, the recently identified ALK ligand ALKAL2 (previously described as FAM150B and AUGα) is also found on the distal portion of 2p, at 2p25. Here we analyze 356 NB tumor samples and discuss observations indicating that gain of 2p has implications for the development of NB. Finally, we put forward the hypothesis that the effect of 2p gain may result from a combination of MYCN, ALK, and the ALK ligand ALKAL2.

4.
Sci Rep ; 9(1): 2199, 2019 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-30778092

RESUMEN

The ALK tyrosine kinase receptor is oncogenically activated in neuroblastoma. Whereas numerous ALK fusion genes have been reported in different malignancies, in neuroblastoma ALK is mainly activated through point mutations. Three hotspot residues (F1174, F1245, and R1275) account for 85% of mutant ALK seen in neuroblastoma. In a cohort of 105 Swedish neuroblastoma cases of all stages, these hotspot regions were re-sequenced (>5000X). ALK mutations were detected in 16 of 105 patients (range of variant allele fraction: 2.7-60%). Mutations at the F1174 and F1245 hotspot were observed in eleven and three cases respectively. ALK mutations were also detected at the I1171 and L1240 codons in one tumor each. No mutations were detected at R1275. Sanger sequencing could confirm ALK status for all mutated samples with variant allele fraction above 15%. Four of the samples with subclonal ALK mutation fraction below this would have gone undetected relying on Sanger sequencing only. No distinct mutation spectrum in relation to neuroblastoma tumours genomic subtypes could be detected although there was a paucity of ALK mutations among 11q-deleted tumors. As ALK mutations status opens up an excellent opportunity for application of small molecule inhibitors targeting ALK, early and sensitive detection of ALK alterations is clinically important considering its potential role in tumour progression.


Asunto(s)
Quinasa de Linfoma Anaplásico/genética , Biomarcadores de Tumor , Mutación , Neuroblastoma/genética , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico/antagonistas & inhibidores , Niño , Exones , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Terapia Molecular Dirigida , Tasa de Mutación , Neuroblastoma/diagnóstico , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/mortalidad , Polimorfismo de Nucleótido Simple , Pronóstico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Adulto Joven
5.
Sci Signal ; 10(507)2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29184034

RESUMEN

Activation of the RAS-RAF-MEK-ERK signaling pathway is implicated in driving the initiation and progression of multiple cancers. Several inhibitors targeting the RAS-MAPK pathway are clinically approved as single- or polyagent therapies for patients with specific types of cancer. One example is the MEK inhibitor trametinib, which is included as a rational polytherapy strategy for treating EML4-ALK-positive, EGFR-activated, or KRAS-mutant lung cancers and neuroblastomas that also contain activating mutations in the RAS-MAPK pathway. In addition, in neuroblastoma, a heterogeneous disease, relapse cases display an increased rate of mutations in ALK, NRAS, and NF1, leading to increased activation of RAS-MAPK signaling. Co-targeting ALK and the RAS-MAPK pathway is an attractive option, because monotherapies have not yet produced effective results in ALK-addicted neuroblastoma patients. We evaluated the response of neuroblastoma cell lines to MEK-ERK pathway inhibition by trametinib. In contrast to RAS-MAPK pathway-mutated neuroblastoma cell lines, ALK-addicted neuroblastoma cells treated with trametinib showed increased activation (inferred by phosphorylation) of the kinases AKT and ERK5. This feedback response was mediated by the mammalian target of rapamycin complex 2-associated protein SIN1, resulting in increased survival and proliferation that depended on AKT signaling. In xenografts in mice, trametinib inhibited the growth of EML4-ALK-positive non-small cell lung cancer and RAS-mutant neuroblastoma but not ALK-addicted neuroblastoma. Thus, our results advise against the seemingly rational option of using MEK inhibitors to treat ALK-addicted neuroblastoma.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias Pulmonares/tratamiento farmacológico , Neuroblastoma/tratamiento farmacológico , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico , Proteínas Tirosina Quinasas Receptoras/antagonistas & inhibidores , Quinasa de Linfoma Anaplásico , Animales , Antineoplásicos/farmacología , Línea Celular Tumoral , Femenino , Humanos , Neoplasias Pulmonares/enzimología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Diana Mecanicista del Complejo 2 de la Rapamicina/antagonistas & inhibidores , Diana Mecanicista del Complejo 2 de la Rapamicina/metabolismo , Ratones , Ratones Endogámicos BALB C , Proteína Quinasa 7 Activada por Mitógenos/antagonistas & inhibidores , Proteína Quinasa 7 Activada por Mitógenos/metabolismo , Neuroblastoma/enzimología , Proteínas de Fusión Oncogénica/antagonistas & inhibidores , Proteínas de Fusión Oncogénica/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Piridonas/farmacología , Pirimidinonas/farmacología , Proteínas Tirosina Quinasas Receptoras/genética , Ensayos Antitumor por Modelo de Xenoinjerto
6.
Int J Oncol ; 48(3): 1103-16, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26794043

RESUMEN

In the pediatric cancer neuroblastoma, analysis of recurrent chromosomal aberrations such as loss of chromosome 1p, 11q, gain of 17q and MYCN amplification are used for patient stratification and subsequent therapy decision making. Different analysis techniques have been used for detection of segmental abnormalities, including fluorescence in situ hybridization (FISH), comparative genomic hybridization (CGH)-microarrays and multiplex ligation-dependent probe amplification (MLPA). However, as next-generation sequencing becomes available for clinical use, this technique could also be used for assessment of copy number alterations simultaneously with mutational analysis. In this study we compare genomic profiles generated through exome sequencing data with profiles generated from high resolution Affymetrix single nucleotide polymorphism (SNP) microarrays on 30 neuroblastoma tumors of different stages. Normalized coverage reads for tumors were calculated using Control-FREEC software and visualized through a web based Shiny application, prior to comparison with corresponding SNP-microarray data. The two methods show high-level agreement for breakpoints and copy number of larger segmental aberrations and numerical aneuploidies. However, several smaller gene containing deletions that could not readily be detected through the SNP-microarray analyses were identified through exome profiling, most likely due to difference between spatial distribution of microarray probes and targeted regions of the exome capture. These smaller aberrations included focal ATRX deletion in two tumors and three cases of novel deletions in chromosomal region 19q13.2 causing homozygous loss of multiple genes including the CIC (Capicua) gene. In conclusion, genomic profiles generated from normalized coverage of exome sequencing show concordance with SNP microarray generated genomic profiles. Exome sequencing is therefore a useful diagnostic tool for copy number variant (CNV) detection in neuroblastoma tumors, especially considering the combination with mutational screening. This enables detection of theranostic targets such as ALK and ATRX together with detection of significant segmental aneuploidies, such as 2p-gain, 17q-gain, 11q-deletion as well as MYCN amplification.


Asunto(s)
Cromosomas Humanos Par 19/genética , Eliminación de Gen , Dosificación de Gen , Neuroblastoma/genética , Polimorfismo de Nucleótido Simple , Proteínas Represoras/genética , Línea Celular Tumoral , Hibridación Genómica Comparativa , Análisis Mutacional de ADN , Exoma , Amplificación de Genes , Homocigoto , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Análisis de Secuencia de ADN , Suecia
7.
Genes Chromosomes Cancer ; 54(2): 99-109, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25251827

RESUMEN

Anaplastic lymphoma kinase (ALK) has been demonstrated to be deregulated in sporadic as well as in familiar cases of neuroblastoma (NB). Whereas ALK-fusion proteins are common in lymphoma and lung cancer, there are few reports of ALK rearrangements in NB indicating that ALK mainly exerts its oncogenic capacity via activating mutations and/or overexpression in this tumor type. In this study, 332 NB tumors and 13 cell lines were screened by high resolution single nucleotide polymorphism microarray. Gain of 2p was detected in 23% (60/332) of primary tumors and 46% (6/13) of cell lines, while breakpoints at the ALK locus were detected in four primary tumors and two cell lines. These were further analyzed by next generation sequencing and a targeted enrichment approach. Samples with both ALK and MYCN amplification displayed complex genomic rearrangements with multiple breakpoints within the amplicon. None of the translocations characterized in primary NB tumors are likely to result in a chimeric protein. However, immunohistochemical analysis reveals high levels of phosphorylated ALK in these samples despite lack of initial exons, possibly due to alternative transcription initiation sites. Both ALK proteins predicted to arise from such alterations and from the abnormal ALK exon 4-11 deletion observed in the CLB-BAR cell line show strong activation of downstream targets STAT3 and extracellular signal-regulated kinase (ERK) when expressed in PC12 cells. Taken together, our data indicate a novel, although rare, mechanism of ALK activation with implications for NB tumorigenesis.


Asunto(s)
Reordenamiento Génico , Neuroblastoma/genética , Proteínas Tirosina Quinasas Receptoras/genética , Translocación Genética , Quinasa de Linfoma Anaplásico , Animales , Línea Celular Tumoral , Puntos de Rotura del Cromosoma , Exones , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neuroblastoma/metabolismo , Células PC12 , Polimorfismo de Nucleótido Simple , Ratas , Proteínas Tirosina Quinasas Receptoras/metabolismo , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo
8.
J Clin Oncol ; 32(25): 2727-34, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-25071110

RESUMEN

PURPOSE: In neuroblastoma, the ALK receptor tyrosine kinase is activated by point mutations. We investigated the potential role of ALK mutations in neuroblastoma clonal evolution. METHODS: We analyzed ALK mutations in 54 paired diagnosis-relapse neuroblastoma samples using Sanger sequencing. When an ALK mutation was observed in one paired sample, a minor mutated component in the other sample was searched for by more than 100,000× deep sequencing of the relevant hotspot, with a sensitivity of 0.17%. RESULTS: All nine ALK-mutated cases at diagnosis demonstrated the same mutation at relapse, in one case in only one of several relapse nodules. In five additional cases, the mutation seemed to be relapse specific, four of which were investigated by deep sequencing. In two cases, no mutation evidence was observed at diagnosis. In one case, the mutation was present at a subclonal level (0.798%) at diagnosis, whereas in another case, two different mutations resulting in identical amino acid changes were detected, one only at diagnosis and the other only at relapse. Further evidence of clonal evolution of ALK-mutated cells was provided by establishment of a fully ALK-mutated cell line from a primary sample with an ALK-mutated cell population at subclonal level (6.6%). CONCLUSION: In neuroblastoma, subclonal ALK mutations can be present at diagnosis with subsequent clonal expansion at relapse. Given the potential of ALK-targeted therapy, the significant spatiotemporal variation of ALK mutations is of utmost importance, highlighting the potential of deep sequencing for detection of subclonal mutations with a sensitivity 100-fold that of Sanger sequencing and the importance of serial samplings for therapeutic decisions.


Asunto(s)
Neuroblastoma/enzimología , Neuroblastoma/genética , Mutación Puntual , Proteínas Tirosina Quinasas Receptoras/genética , Adolescente , Adulto , Anciano de 80 o más Años , Quinasa de Linfoma Anaplásico , Preescolar , Activación Enzimática , Exones , Humanos , Lactante , Persona de Mediana Edad , Recurrencia Local de Neoplasia/enzimología , Recurrencia Local de Neoplasia/genética , Adulto Joven
9.
PLoS One ; 7(12): e51297, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284678

RESUMEN

BACKGROUND: The TH-MYCN transgenic neuroblastoma model, with targeted MYCN expression to the developing neural crest, has been used to study neuroblastoma development and evaluate novel targeted tumor therapies. METHODS: We followed tumor development in 395 TH-MYCN (129X1/SvJ) mice (125 negative, 206 hemizygous and 64 homozygous mice) by abdominal palpations up to 40 weeks of age. DNA sequencing of MYCN in the original plasmid construct and mouse genomic DNA was done to verify the accuracy. Copy number analysis with Affymetrix® Mouse Diversity Genotyping Arrays was used to characterize acquired genetic aberrations. RESULTS: DNA sequencing confirmed presence of human MYCN cDNA in genomic TH-MYCN DNA corresponding to the original plasmid construct. Tumor incidence and growth correlated significantly to transgene status with event-free survival for hemizygous mice at 50%, and 0% for homozygous mice. Hemizygous mice developed tumors at 5.6-19 weeks (median 9.1) and homozygous mice at 4.0-6.9 weeks (5.4). The mean treatment window, time from palpable tumor to sacrifice, for hemizygous and homozygous mice was 15 and 5.2 days, respectively. Hemizygous mice developing tumors as early as homozygous mice had a longer treatment window. Age at tumor development did not influence treatment window for hemizygous mice, whereas treatment window in homozygous mice decreased significantly with increasing age. Seven out of 10 analysed tumors had a flat DNA profile with neither segmental nor numerical chromosomal aberrations. Only three tumors from hemizygous mice showed acquired genetic features with one or more numerical aberrations. Of these, one event corresponded to gain on the mouse equivalent of human chromosome 17. CONCLUSION: Hemizygous and homozygous TH-MYCN mice have significantly different neuroblastoma incidence, tumor growth characteristics and treatment windows but overlap in age at tumor development making correct early genotyping essential to evaluate therapeutic interventions. Contrasting previous studies, our data show that TH-MYCN tumors have few genetic aberrations.


Asunto(s)
Variaciones en el Número de Copia de ADN , Neuroblastoma/genética , Neuroblastoma/patología , Proteínas Nucleares/genética , Proteínas Oncogénicas/genética , Animales , Cruzamiento , Proliferación Celular , Modelos Animales de Enfermedad , Femenino , Hemicigoto , Homocigoto , Humanos , Masculino , Ratones , Ratones Transgénicos , Proteína Proto-Oncogénica N-Myc , Neuroblastoma/diagnóstico por imagen , Neuroblastoma/terapia , Análisis de Secuencia de ADN , Transgenes/genética , Ultrasonografía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...