Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Med Res Rev ; 44(3): 1267-1325, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38226452

RESUMEN

Neuropsychiatric disorders denote a broad range of illnesses involving neurology and psychiatry. These disorders include depressive disorders, anxiety, schizophrenia, bipolar disorder, attention deficit hyperactivity disorder, autism spectrum disorders, headaches, and epilepsy. In addition to their main neuropathology that lies in the central nervous system (CNS), lately, studies have highlighted the role of immunity and neuroinflammation in neuropsychiatric disorders. Toll-like receptors (TLRs) are innate receptors that act as a bridge between the innate and adaptive immune systems via adaptor proteins (e.g., MYD88) and downstream elements; TLRs are classified into 13 families that are involved in normal function and illnesses of the CNS. TLRs expression affects the course of neuropsychiatric disorders, and is influenced during their pharmacotherapy; For example, the expression of multiple TLRs is normalized during the major depressive disorder pharmacotherapy. Here, the role of TLRs in neuroimmunology, treatment, and management of neuropsychiatric disorders is discussed. We recommend longitudinal studies to comparatively assess the cell-type-specific expression of TLRs during treatment, illness progression, and remission. Also, further research should explore molecular insights into TLRs regulation and related pathways.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Receptores Toll-Like/metabolismo , Sistema Nervioso Central , Inmunidad Innata
2.
J Neuroinflammation ; 19(1): 273, 2022 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-36397116

RESUMEN

Microglia represent the first line of immune feedback in the brain. Beyond immune surveillance, they are essential for maintaining brain homeostasis. Recent research has revealed the microglial cells' spatiotemporal heterogeneity based on their local and time-based functions in brain trauma or disease when homeostasis is disrupted. Distinct "microglial signatures" have been recorded in physiological states and brain injuries, with discrete or sometimes overlapping pro- and anti-inflammatory functions. Microglia are involved in the neurological repair processes, such as neurovascular unit restoration and synaptic plasticity, and manage the extent of the damage due to their phenotype switching. The versatility of cellular phenotypes beyond the classical M1/M2 classification, as well as the double-edge actions of microglia in neurodegeneration, indicate the need for further exploration of microglial cell dynamics and their contribution to neurodegenerative processes. This review discusses the homeostatic functions of different microglial subsets focusing on neuropathological conditions. Also, we address the feasibility of targeting microglia as a therapeutic strategy in neurodegenerative diseases.


Asunto(s)
Microglía , Enfermedades Neurodegenerativas , Humanos , Microglía/patología , Enfermedades Neuroinflamatorias , Enfermedades Neurodegenerativas/patología , Encéfalo/patología
3.
J Leukoc Biol ; 112(5): 1191-1207, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35707959

RESUMEN

Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disorder worldwide. In ALS, progressing disease can result from misfolding and aggregation of superoxide dismutase-1 (SOD1) or TAR DNA-binding protein 43 kDa (TDP43). An efficient immunotherapy for ALS should spare intact SOD1 while eliminating its dysfunctional variant. We utilized advanced immunoinformatics to suggest a potential vaccine candidate against ALS by proposing a model of dynamic TLR4 mediation and induction of a specific Th2-biased shift against mutant SOD1, TDP43, and TRAF6, a protein that specifically interacts with dysfunctional SOD1. SOD1, TDP43, and TRAF6 were retrieved in FASTA. Immune Epitopes Database and CTLpred suggested T/B-cell epitopes from disease-specific regions of selected antigens. A TLR4-mediating adjuvant, RS01, was used. Sequences were assembled via suitable linkers. Tertiary structure of the protein was calculated. Refined protein structure and physicochemical features of the 3D structure were verified in silico. Differential immune induction was assessed via C-ImmSim. GROningen MAchine for Chemical Simulation was used to assess evolution of the docked vaccine-TLR4 complex in blood. Our protein showed high structural quality and was nonallergenic and immune inducing. Also, the vaccine-TLR4 complex stability was verified by RMSD, RMSF, gyration, and visual analyses of the molecular dynamic trajectory. Contact residues in the vaccine-TLR4 complex showed favorable binding energies. Immune stimulation analyses of the proposed candidate demonstrated a sustained memory cell response and a strong adaptive immune reaction. We proposed a potential vaccine candidate against ALS and verified its physicochemical and immune inducing features. Future studies should assess this vaccine in animal studies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Vacunas , Animales , Esclerosis Amiotrófica Lateral/terapia , Esclerosis Amiotrófica Lateral/metabolismo , Superóxido Dismutasa-1/metabolismo , Receptor Toll-Like 4/metabolismo , Epítopos de Linfocito B , Factor 6 Asociado a Receptor de TNF/metabolismo , Superóxido Dismutasa , Proteínas de Unión al ADN/metabolismo , Epítopos de Linfocito T
4.
Curr Neuropharmacol ; 20(6): 1093-1115, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34970956

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative impairment mainly recognized by memory loss and cognitive deficits. However, the current therapies against AD are mostly limited to palliative medications, prompting researchers to investigate more efficient therapeutic approaches for AD, such as stem cell therapy. Recent evidence has proposed that extensive neuronal and synaptic loss and altered adult neurogenesis, which is perceived pivotal in terms of plasticity and network maintenance, occurs early in the course of AD, which exacerbates neuronal vulnerability to AD. Thus, regeneration and replenishing the depleted neuronal networks by strengthening the endogenous repair mechanisms or exogenous stem cells and their cargoes is a rational therapeutic approach. Currently, several stem cell-based therapies as well as stem cell products like exosomes, have shown promising results in the early diagnosis of AD. OBJECTIVE: This review begins with a comparison between AD and normal aging pathophysiology and a discussion on open questions in the field. Next, summarizing the current stem cell-based therapeutic and diagnostic approaches, we declare the advantages and disadvantages of each method. Also, we comprehensively evaluate the human clinical trials of stem cell therapies for AD. METHODOLOGY: Peer-reviewed reports were extracted through Embase, PubMed, and Google Scholar until 2021. RESULTS: With several ongoing clinical trials, stem cells and their derivatives (e.g., exosomes) are an emerging and encouraging field in diagnosing and treating neurodegenerative diseases. Although stem cell therapies have been successful in animal models, numerous clinical trials in AD patients have yielded unpromising results, which we will further discuss.


Asunto(s)
Enfermedad de Alzheimer , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/terapia , Animales , Humanos , Neurogénesis , Neuronas , Trasplante de Células Madre/métodos
5.
Ageing Res Rev ; 62: 101106, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32565329

RESUMEN

Stem cell-based treatments have been suggested as promising candidates for stroke. Recently, mesenchymal stem cells (MSCs) have been reported as potential therapeutics for a wide range of diseases. In particular, clinical trial studies have suggested MSCs for stroke therapy. The focus of MSC treatments has been directed towards cell replacement. However, recent research has lately highlighted their paracrine actions. The secretion of extracellular vesicles (EVs) is offered to be the main therapeutic mechanism of MSC therapy. However, EV-based treatments may provide a wider therapeutic window compared to tissue plasminogen activator (tPA), the traditional treatment for stroke. Exosomes are nano-sized EVs secreted by most cell types, and can be isolated from conditioned cell media or body fluids such as plasma, urine, and cerebrospinal fluid (CSF). Exosomes apply their effects through targeting their cargos such as microRNAs (miRs), DNAs, messenger RNAs, and proteins at the host cells, which leads to a shift in the behavior of the recipient cells. It has been indicated that exosomes, in particular their functional cargoes, play a significant role in the coupled pathogenesis and recovery of stroke through affecting the neurovascular unit (NVU). Therefore, it seems that exosomes could be utilized as diagnostic and therapeutic tools in stroke treatment. The miRs are small endogenous non-coding RNA molecules which serve as the main functional cargo of exosomes, and apply their effects as epigenetic regulators. These versatile non-coding RNA molecules are involved in various stages of stroke and affect stroke-related factors. Moreover, the involvement of aging-induced changes to specific miRs profile in stroke further highlights the role of miRs. Thus, miRs could be utilized as diagnostic, prognostic, and therapeutic tools in stroke. In this review, we discuss the roles of stem cells, exosomes, and their application in stroke therapy. We also highlight the usage of miRs as a therapeutic choice in stroke therapy.


Asunto(s)
Exosomas , Vesículas Extracelulares , Células Madre Mesenquimatosas , Accidente Cerebrovascular , Humanos , MicroARNs/genética , Accidente Cerebrovascular/terapia , Activador de Tejido Plasminógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...