Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Neurosurgery ; 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38551340

RESUMEN

BACKGROUND AND OBJECTIVES: Neurosurgeons and hospitals devote tremendous resources to improving recovery from lumbar spine surgery. Current efforts to predict surgical recovery rely on one-time patient report and health record information. However, longitudinal mobile health (mHealth) assessments integrating symptom dynamics from ecological momentary assessment (EMA) and wearable biometric data may capture important influences on recovery. Our objective was to evaluate whether a preoperative mHealth assessment integrating EMA with Fitbit monitoring improved predictions of spine surgery recovery. METHODS: Patients age 21-85 years undergoing lumbar surgery for degenerative disease between 2021 and 2023 were recruited. For up to 3 weeks preoperatively, participants completed EMAs up to 5 times daily asking about momentary pain, disability, depression, and catastrophizing. At the same time, they were passively monitored using Fitbit trackers. Study outcomes were good/excellent recovery on the Quality of Recovery-15 (QOR-15) and a clinically important change in Patient-Reported Outcomes Measurement Information System Pain Interference 1 month postoperatively. After feature engineering, several machine learning prediction models were tested. Prediction performance was measured using the c-statistic. RESULTS: A total of 133 participants were included, with a median (IQR) age of 62 (53, 68) years, and 56% were female. The median (IQR) number of preoperative EMAs completed was 78 (61, 95), and the median (IQR) number of days with usable Fitbit data was 17 (12, 21). 63 patients (48%) achieved a clinically meaningful improvement in Patient-Reported Outcomes Measurement Information System pain interference. Compared with traditional evaluations alone, mHealth evaluations led to a 34% improvement in predictions for pain interference (c = 0.82 vs c = 0.61). 49 patients (40%) had a good or excellent recovery based on the QOR-15. Including preoperative mHealth data led to a 30% improvement in predictions of QOR-15 (c = 0.70 vs c = 0.54). CONCLUSION: Multimodal mHealth evaluations improve predictions of lumbar surgery outcomes. These methods may be useful for informing patient selection and perioperative recovery strategies.

2.
JAMA Netw Open ; 7(1): e2348565, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38277149

RESUMEN

Importance: Comorbid depression is common among patients with degenerative lumbar spine disease. Although a well-researched topic, the evidence of the role of depression in spine surgery outcomes remains inconclusive. Objective: To investigate the association between preoperative depression and patient-reported outcome measures (PROMs) after lumbar spine surgery. Data Sources: A systematic search of PubMed, Cochrane Database of Systematic Reviews, Embase, Scopus, PsychInfo, Web of Science, and ClinicalTrials.gov was performed from database inception to September 14, 2023. Study Selection: Included studies involved adults undergoing lumbar spine surgery and compared PROMs in patients with vs those without depression. Studies evaluating the correlation between preoperative depression and disease severity were also included. Data Extraction and Synthesis: All data were independently extracted by 2 authors and independently verified by a third author. Study quality was assessed using Newcastle-Ottawa Scale. Random-effects meta-analysis was used to synthesize data, and I2 was used to assess heterogeneity. Metaregression was performed to identify factors explaining the heterogeneity. Main Outcomes and Measures: The primary outcome was the standardized mean difference (SMD) of change from preoperative baseline to postoperative follow-up in PROMs of disability, pain, and physical function for patients with vs without depression. Secondary outcomes were preoperative and postoperative differences in absolute disease severity for these 2 patient populations. Results: Of the 8459 articles identified, 44 were included in the analysis. These studies involved 21 452 patients with a mean (SD) age of 57 (8) years and included 11 747 females (55%). Among these studies, the median (range) follow-up duration was 12 (6-120) months. The pooled estimates of disability, pain, and physical function showed that patients with depression experienced a greater magnitude of improvement compared with patients without depression, but this difference was not significant (SMD, 0.04 [95% CI, -0.02 to 0.10]; I2 = 75%; P = .21). Nonetheless, patients with depression presented with worse preoperative disease severity in disability, pain, and physical function (SMD, -0.52 [95% CI, -0.62 to -0.41]; I2 = 89%; P < .001), which remained worse postoperatively (SMD, -0.52 [95% CI, -0.75 to -0.28]; I2 = 98%; P < .001). There was no significant correlation between depression severity and the primary outcome. A multivariable metaregression analysis suggested that age, sex (male to female ratio), percentage of comorbidities, and follow-up attrition were significant sources of variance. Conclusions and Relevance: Results of this systematic review and meta-analysis suggested that, although patients with depression had worse disease severity both before and after surgery compared with patients without depression, they had significant potential for recovery in disability, pain, and physical function. Further investigations are needed to examine the association between spine-related disability and depression as well as the role of perioperative mental health treatments.


Asunto(s)
Depresión , Dolor , Adulto , Humanos , Masculino , Femenino , Persona de Mediana Edad , Depresión/epidemiología , Depresión/complicaciones , Procedimientos Neuroquirúrgicos , Columna Vertebral
3.
J Neurotrauma ; 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38062795

RESUMEN

Cervical spinal cord injury (SCI) causes devastating loss of upper limb function and independence. Restoration of upper limb function can have a profound impact on independence and quality of life. In low-cervical SCI (level C5-C8), upper limb function can be restored via reinnervation strategies such as nerve transfer surgery. The translation of recovered upper limb motor function into functional independence in activities of daily living (ADLs), however, remains unknown in low cervical SCI (i.e., tetraplegia). The objective of this study was to evaluate the association of patterns in upper limb motor recovery with functional independence in ADLs. This will then inform prioritization of reinnervation strategies focused to maximize function in patients with tetraplegia. This retrospective study performed a secondary analysis of patients with low cervical (C5-C8) enrolled in the SCI Model Systems (SCIMS) database. Baseline neurological examinations and their association with functional independence in major ADLs-i.e., eating, bladder management, and transfers (bed/wheelchair/chair)-were evaluated. Motor functional recovery was defined as achieving motor strength, in modified research council (MRC) grade, of ≥ 3 /5 at one year from ≤ 2/5 at baseline. The association of motor function recovery with functional independence at one-year follow-up was compared in patients with recovered elbow flexion (C5), wrist extension (C6), elbow extension (C7), and finger flexion (C8). A multi-variable logistic regression analysis, adjusting for known factors influencing recovery after SCI, was performed to evaluate the impact of motor function at one year on a composite outcome of functional independence in major ADLs. Composite outcome was defined as functional independence measure score of 6 or higher (complete independence) in at least two domains among eating, bladder management, and transfers. Between 1992 and 2016, 1090 patients with low cervical SCI and complete neurological/functional measures were included. At baseline, 67% of patients had complete SCI and 33% had incomplete SCI. The majority of patients were dependent in eating, bladder management, and transfers. At one-year follow-up, the largest proportion of patients who recovered motor function in finger flexion (C8) and elbow extension (C7) gained independence in eating, bladder management, and transfers. In multi-variable analysis, patients who had recovered finger flexion (C8) or elbow extension (C7) had higher odds of gaining independence in a composite of major ADLs (odds ratio [OR] = 3.13 and OR = 2.87, respectively, p < 0.001). Age 60 years (OR = 0.44, p = 0.01), and complete SCI (OR = 0.43, p = 0.002) were associated with reduced odds of gaining independence in ADLs. After cervical SCI, finger flexion (C8) and elbow extension (C7) recovery translate into greater independence in eating, bladder management, and transfers. These results can be used to design individualized reinnervation plans to reanimate upper limb function and maximize independence in patients with low cervical SCI.

4.
Neurosurg Focus ; 55(3): E7, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37657107

RESUMEN

OBJECTIVE: Diffusion basis spectrum imaging (DBSI) has shown promise in evaluating cervical spinal cord structural changes in patients with cervical spondylotic myelopathy (CSM). DBSI may also be valuable in the postoperative setting by serially tracking spinal cord microstructural changes following decompressive cervical spine surgery. Currently, there is a paucity of studies investigating this topic, likely because of challenges in resolving signal distortions from spinal instrumentation. Therefore, the objective of this study was to assess the feasibility of DBSI metrics extracted from the C3 spinal level to evaluate CSM patients postoperatively. METHODS: Fifty CSM patients and 20 healthy controls were enrolled in a single-center prospective study between 2018 and 2020. All patients and healthy controls underwent preoperative and postoperative diffusion-weighted MRI (dMRI) at a 2-year follow-up. All CSM patients underwent decompressive cervical surgery. The modified Japanese Orthopaedic Association (mJOA) score was used to categorize CSM patients as having mild, moderate, or severe myelopathy. DBSI metrics were extracted from the C3 spinal cord level to minimize image artifact and reduce partial volume effects. DBSI anisotropic tensors evaluated white matter tracts through fractional anisotropy, axial diffusivity, radial diffusivity, and fiber fraction. DBSI isotropic tensors assessed extra-axonal pathology through restricted and nonrestricted fractions. RESULTS: Of the 50 CSM patients, both baseline and postoperative dMR images with sufficient quality for analysis were obtained in 27 patients. These included 15 patients with mild CSM (mJOA scores 15-17), 7 with moderate CSM (scores 12-14), and 5 with severe CSM (scores 0-11), who were followed up for a mean of 23.5 (SD 4.1, range 11-31) months. All preoperative C3-level DBSI measures were significantly different between CSM patients and healthy controls (p < 0.05), except DBSI fractional anisotropy (p = 0.31). At the 2-year follow-up, the same significance pattern was found between CSM patients and healthy controls, except DBSI radial diffusivity was no longer statistically significant (p = 0.75). When assessing change (i.e., postoperative - preoperative values) in C3-level DBSI measures, CSM patients exhibited significant decreases in DBSI radial diffusivity (p = 0.02), suggesting improvement in myelin integrity (i.e., remyelination) at the 2-year follow-up. Among healthy controls, there was no significant difference in DBSI metrics over time. CONCLUSIONS: DBSI metrics derived from dMRI at the C3 spinal level can be used to provide meaningful insights into representations of the spinal cord microstructure of CSM patients at baseline and 2-year follow-up. DBSI may have the potential to characterize white matter tract recovery and inform outcomes following decompressive cervical surgery for CSM.


Asunto(s)
Enfermedades de la Médula Espinal , Humanos , Estudios de Factibilidad , Estudios Prospectivos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía
5.
Global Spine J ; : 21925682231193610, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37522797

RESUMEN

STUDY DESIGN: Retrospective Case-Series. OBJECTIVES: Due to heterogeneity in previous studies, the effect of MI-TLIF on postoperative segmental lordosis (SL) and lumbar lordosis (LL) remains unclear. Therefore, we aim to identify radiographic factors associated with lordosis after surgery in a homogenous series of MI-TLIF patients. METHODS: A single-center retrospective review identified consecutive patients who underwent single-level MI-TLIF for grade 1 degenerative spondylolisthesis from 2015-2020. All surgeries underwent unilateral facetectomies and a contralateral facet release with expandable interbody cages. PROs included the ODI and NRS-BP for low-back pain. Radiographic measures included SL, disc height, percent spondylolisthesis, cage positioning, LL, PI-LL mismatch, sacral-slope, and pelvic-tilt. Surgeries were considered "lordosing" if the change in postoperative SL was ≥ +4° and "kyphosing" if ≤ -4°. Predictors of change in SL/LL were evaluated using Pearson's correlation and multivariable regression. RESULTS: A total of 73 patients with an average follow-up of 22.5 (range 12-61) months were included. Patients experienced significant improvements in ODI (29% ± 22% improvement, P < .001) and NRS-BP (3.3 ± 3 point improvement, P < .001). There was a significant increase in mean SL (Δ3.43° ± 4.37°, P < .001) while LL (Δ0.17° ± 6.98°, P > .05) remained stable. Thirty-eight (52%) patients experienced lordosing MI-TLIFs, compared to 4 (5%) kyphosing and 31 (43%) neutral MI-TLIFs. A lower preoperative SL and more anterior cage placement were associated with the greatest improvement in SL (ß = -.45° P = .001, ß = 15.06° P < .001, respectively). CONCLUSIONS: In our series, the majority of patients experienced lordosing or neutral MI-TLIFs (n = 69, 95%). Preoperative radiographic alignment and anterior cage placement were significantly associated with target SL following MI-TLIF.

6.
Oper Neurosurg (Hagerstown) ; 25(3): 242-250, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37441801

RESUMEN

BACKGROUND: Chronic entrapment neuropathy results in a clinical syndrome ranging from mild pain to debilitating atrophy. There remains a lack of objective metrics that quantify nerve dysfunction and guide surgical decision-making. Mechanomyography (MMG) reflects mechanical motor activity after stimulation of neuromuscular tissue and may indicate underlying nerve dysfunction. OBJECTIVE: To evaluate the role of MMG as a surgical adjunct in treating chronic entrapment neuropathies. METHODS: Patients 18 years or older with cubital tunnel syndrome (n = 8) and common peroneal neuropathy (n = 15) were enrolled. Surgical decompression of entrapped nerves was performed with intraoperative MMG of the hypothenar and tibialis anterior muscles. MMG stimulus thresholds (MMG-st) were correlated with compound muscle action potential (CMAP), motor nerve conduction velocity, baseline functional status, and clinical outcomes. RESULTS: After nerve decompression, MMG-st significantly reduced, the mean reduction of 0.5 mA (95% CI: 0.3-0.7, P < .001). On bivariate analysis, MMG-st exhibited significant negative correlation with common peroneal nerve CMAP ( P < .05), but no association with ulnar nerve CMAP and motor nerve conduction velocity. On preoperative electrodiagnosis, 60% of nerves had axonal loss and 40% had conduction block. The MMG-st was higher in the nerves with axonal loss as compared with the nerves with conduction block. MMG-st was negatively correlated with preoperative hand strength (grip/pinch) and foot-dorsiflexion/toe-extension strength ( P < .05). At the final visit, MMG-st significantly correlated with pain, PROMIS-10 physical function, and Oswestry Disability Index ( P < .05). CONCLUSION: MMG-st may serve as a surgical adjunct indicating axonal integrity in chronic entrapment neuropathies which may aid in clinical decision-making and prognostication of functional outcomes.


Asunto(s)
Síndrome del Túnel Cubital , Conducción Nerviosa , Humanos , Conducción Nerviosa/fisiología , Nervio Cubital/cirugía , Síndrome del Túnel Cubital/diagnóstico , Síndrome del Túnel Cubital/cirugía , Músculo Esquelético , Dolor
7.
J Neurosurg Spine ; 39(3): 355-362, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37243549

RESUMEN

OBJECTIVE: High cervical spinal cord injury (SCI) results in complete loss of upper-limb function, resulting in debilitating tetraplegia and permanent disability. Spontaneous motor recovery occurs to varying degrees in some patients, particularly in the 1st year postinjury. However, the impact of this upper-limb motor recovery on long-term functional outcomes remains unknown. The objective of this study was to characterize the impact of upper-limb motor recovery on the degree of long-term functional outcomes in order to inform priorities for research interventions that restore upper-limb function in patients with high cervical SCI. METHODS: A prospective cohort of high cervical SCI (C1-4) patients with American Spinal Injury Association Impairment Scale (AIS) grade A-D injury and enrolled in the Spinal Cord Injury Model Systems Database was included. Baseline neurological examinations and functional independence measures (FIMs) in feeding, bladder management, and transfers (bed/wheelchair/chair) were evaluated. Independence was defined as score ≥ 4 in each of the FIM domains at 1-year follow-up. At 1-year follow-up, functional independence was compared among patients who gained recovery (motor grade ≥ 3) in elbow flexors (C5), wrist extensors (C6), elbow extensors (C7), and finger flexors (C8). Multivariable logistic regression evaluated the impact of motor recovery on functional independence in feeding, bladder management, and transfers. RESULTS: Between 1992 and 2016, 405 high cervical SCI patients were included. At baseline, 97% of patients had impaired upper-limb function with total dependence in eating, bladder management, and transfers. At 1 year of follow-up, the largest proportion of patients who gained independence in eating, bladder management, and transfers had recovery in finger flexion (C8) and wrist extension (C6). Elbow flexion (C5) recovery had the lowest translation to functional independence. Patients who achieved elbow extension (C7) were able to transfer independently. On multivariable analysis, patients who gained elbow extension (C7) and finger flexion (C8) were 11 times more likely to gain functional independence (OR 11, 95% CI 2.8-47, p < 0.001) and patients who gained wrist extension (C6) were 7 times more likely to gain functional independence (OR 7.1, 95% CI 1.2-56, p = 0.04). Older age (≥ 60 years) and motor complete SCI (AIS grade A-B) reduced the likelihood of gaining independence. CONCLUSIONS: After high cervical SCI, patients who gained elbow extension (C7) and finger flexion (C8) had significantly greater independence in feeding, bladder management, and transfers than those with recovery in elbow flexion (C5) and wrist extension (C6). Recovery of elbow extension (C7) also increased the capability for independent transfers. This information can be used to set patient expectations and prioritize interventions that restore these upper-limb functions in patients with high cervical SCI.


Asunto(s)
Médula Cervical , Traumatismos de la Médula Espinal , Humanos , Estudios Prospectivos , Extremidad Superior , Traumatismos de la Médula Espinal/complicaciones , Cuadriplejía/complicaciones , Recuperación de la Función
8.
World Neurosurg ; 176: e281-e288, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37209918

RESUMEN

STUDY DESIGN: Cross-sectional study. OBJECTIVE: This study aimed to stratify the geographic distribution of academic spine surgeons in the United States, analyzing how this distribution highlights differences in academic, demographic, professional metrics, and gaps in access to spine care. METHODS: Spine surgeons were identified using American Association of Neurological Surgeons and American Academy of Orthopedic Surgeons databases, categorizing into geographic regions of training and practice. Departmental websites, National Institutes of Health (NIH) RePort Expenditures and Results, Google Patent, and NIH icite databases were queried for demographic and professional metrics. RESULTS: Academic spine surgeons (347 neurological; 314 orthopedic) are predominantly male (95%) and few have patents (23%) or NIH funding (4%). Regionally, the Northeast has the highest proportion per capita (3.28 surgeons per million), but California is the state with the highest proportion (13%). The Northeast has the greatest regional retention post-residency at 74%, followed by the Midwest (59%). The West and South are more associated with additional degrees. Neurosurgery-trained surgeons hold more additional degrees (17%) than orthopedic surgeons (8%), whereas more orthopedic surgeons hold leadership positions (34%) than neurosurgeons (20%). CONCLUSIONS: Academic spine surgeons are found at the highest proportion in the Northeast and California; the Northeast has the greatest regional retention. Spine neurosurgeons have more additional degrees, whereas spine orthopedic surgeons have more leadership positions. These results are relevant to training programs looking to correct geographic disparities, surgeons in search of training programs, or students in pursuit of spine surgery.


Asunto(s)
Neurocirugia , Cirujanos Ortopédicos , Cirujanos , Humanos , Masculino , Estados Unidos , Femenino , Estudios Transversales , Neurocirujanos , Cirujanos/educación , Neurocirugia/educación
9.
J Pain ; 24(8): 1423-1433, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37019164

RESUMEN

Despite the marked increase in ecological momentary assessment research, few reliable and valid measures of momentary experiences have been established. The goal of this preregistered study was to establish the reliability, validity, and prognostic utility of the momentary Pain Catastrophizing Scale (mPCS), a 3-item measure developed to assess situational pain catastrophizing. Participants in 2 studies of postsurgical pain outcomes completed the mPCS 3 to 5 times per day prior to surgery (N = 494, T = 20,271 total assessments). The mPCS showed good psychometric properties, including multilevel reliability and factor invariance across time. Participant-level average mPCS was strongly positively correlated with dispositional pain catastrophizing as assessed by the Pain Catastrophizing Scale (r = .55 and .69 in study 1 and study 2, respectively). To establish prognostic utility, we then examined whether the mPCS improved prediction of postsurgical pain outcomes above and beyond one-time assessment of dispositional pain catastrophizing. Indeed, greater variability in momentary pain catastrophizing prior to surgery was uniquely associated with increased pain immediately after surgery (b = .58, P = .005), after controlling for preoperative pain levels and dispositional pain catastrophizing. Greater average mPCS score prior to surgery was also uniquely associated with lesser day-to-day improvement in postsurgical pain (b = .01, P = .003), whereas dispositional pain catastrophizing was not (b = -.007, P = .099). These results show that the mPCS is a reliable and valid tool for ecological momentary assessment research and highlight its potential utility over and above retrospective measures of pain catastrophizing. PERSPECTIVE: This article presents the psychometric properties and prognostic utility of a new measure to assess momentary pain catastrophizing. This brief, 3-item measure will allow researchers and clinicians to assess fluctuations in pain catastrophizing during individuals' daily lives, as well as dynamic relationships between catastrophizing, pain, and related factors.


Asunto(s)
Catastrofización , Evaluación Ecológica Momentánea , Humanos , Estudios Retrospectivos , Reproducibilidad de los Resultados , Pronóstico , Dimensión del Dolor , Catastrofización/diagnóstico , Dolor Postoperatorio/diagnóstico
11.
Clin Spine Surg ; 36(3): 134-142, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36959182

RESUMEN

STUDY DESIGN: Prospective cohort study. OBJECTIVE: Apply a machine learning clustering algorithm to baseline imaging data to identify clinically relevant cervical spondylotic myelopathy (CSM) patient phenotypes. SUMMARY OF BACKGROUND DATA: A major shortcoming in improving care for CSM patients is the lack of robust quantitative imaging tools to guide surgical decision-making. Advanced diffusion-weighted magnetic resonance imaging (MRI) techniques, such as diffusion basis spectrum imaging (DBSI), may help address this limitation by providing detailed evaluations of white matter injury in CSM. METHODS: Fifty CSM patients underwent comprehensive clinical assessments and diffusion-weighted MRI, followed by DBSI modeling. DBSI metrics included fractional anisotropy, axial and radial diffusivity, fiber fraction, extra-axonal fraction, restricted fraction, and nonrestricted fraction. Neurofunctional status was assessed by the modified Japanese Orthopedic Association, myelopathic disability index, and disabilities of the arm, shoulder, and hand. Quality-of-life was measured by the 36-Item Short Form Survey physical component summary and mental component summary. The neck disability index was used to measure self-reported neck pain. K-means clustering was applied to baseline DBSI measures to identify 3 clinically relevant CSM disease phenotypes. Baseline demographic, clinical, radiographic, and patient-reported outcome measures were compared among clusters using one-way analysis of variance (ANOVA). RESULTS: Twenty-three (55%) mild, 9 (21%) moderate, and 10 (24%) severe myelopathy patients were enrolled. Eight patients were excluded due to MRI data of insufficient quality. Of the remaining 42 patients, 3 groups were generated by k-means clustering. When compared with clusters 1 and 2, cluster 3 performed significantly worse on the modified Japanese Orthopedic Association and all patient-reported outcome measures (P<0.001), except the 36-Item Short Form Survey mental component summary (P>0.05). Cluster 3 also possessed the highest proportion of non-Caucasian patients (43%, P=0.04), the worst hand dynamometer measurements (P<0.05), and significantly higher intra-axonal axial diffusivity and extra-axonal fraction values (P<0.001). CONCLUSIONS: Using baseline imaging data, we delineated a clinically meaningful CSM disease phenotype, characterized by worse neurofunctional status, quality-of-life, and pain, and more severe imaging markers of vasogenic edema. LEVEL OF EVIDENCE: II.


Asunto(s)
Enfermedades de la Médula Espinal , Espondilosis , Humanos , Estudios Prospectivos , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Imagen por Resonancia Magnética/métodos , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Fenotipo
12.
J Neurosurg Spine ; 38(5): 617-626, 2023 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-36670535

RESUMEN

Mobile health (mHealth) technology has assumed a pervasive role in healthcare and society. By capturing real-time features related to spine health, mHealth assessments have the potential to transform multiple aspects of spine care. Yet mHealth applications may not be familiar to many spine surgeons and other spine clinicians. Consequently, the objective of this narrative review is to provide an overview of the technology, analytical considerations, and applications of mHealth tools for evaluating spine surgery patients. Reflecting their near-ubiquitous role in society, smartphones are the most commonly available form of mHealth technology and can provide measures related to activity, sleep, and even social interaction. By comparison, wearable devices can provide more detailed mobility and physiological measures, although capabilities vary substantially by device. To date, mHealth evaluations in spine surgery patients have focused on the use of activity measures, particularly step counts, in an attempt to objectively quantify spine health. However, the correlation between step counts and patient-reported disease severity is inconsistent, and further work is needed to define the mobility metrics most relevant to spine surgery patients. mHealth assessments may also support a variety of other applications that have been studied less frequently, including those that prevent postoperative complications, predict surgical outcomes, and serve as motivational aids to patients. These areas represent key opportunities for future investigations. To maximize the potential of mHealth evaluations, several barriers must be overcome, including technical challenges, privacy and regulatory concerns, and questions related to reimbursement. Despite those obstacles, mHealth technology has the potential to transform many aspects of spine surgery research and practice, and its applications will only continue to grow in the years ahead.


Asunto(s)
Aplicaciones Móviles , Telemedicina , Humanos , Teléfono Inteligente , Tecnología Biomédica , Tecnología
13.
Neurosurgery ; 92(3): 538-546, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36700710

RESUMEN

BACKGROUND: Rapid growth in smartphone use has expanded opportunities to use mobile health (mHealth) technology to collect real-time patient-reported and objective biometric data. These data may have important implication for personalized treatments of degenerative spine disease. However, no large-scale study has examined the feasibility and acceptability of these methods in spine surgery patients. OBJECTIVE: To evaluate the feasibility and acceptability of a multimodal preoperative mHealth assessment in patients with degenerative spine disease. METHODS: Adults undergoing elective spine surgery were provided with Fitbit trackers and sent preoperative ecological momentary assessments (EMAs) assessing pain, disability, mood, and catastrophizing 5 times daily for 3 weeks. Objective adherence rates and a subjective acceptability survey were used to evaluate feasibility of these methods. RESULTS: The 77 included participants completed an average of 82 EMAs each, with an average completion rate of 86%. Younger age and chronic pulmonary disease were significantly associated with lower EMA adherence. Seventy-two (93%) participants completed Fitbit monitoring and wore the Fitbits for an average of 247 hours each. On average, participants wore the Fitbits for at least 12 hours per day for 15 days. Only worse mood scores were independently associated with lower Fitbit adherence. Most participants endorsed positive experiences with the study protocol, including 91% who said they would be willing to complete EMAs to improve their preoperative surgical guidance. CONCLUSION: Spine fusion candidates successfully completed a preoperative multimodal mHealth assessment with high acceptability. The intensive longitudinal data collected may provide new insights that improve patient selection and treatment guidance.


Asunto(s)
Teléfono Inteligente , Telemedicina , Adulto , Humanos , Estudios de Factibilidad , Encuestas y Cuestionarios , Evaluación Ecológica Momentánea
14.
Spine J ; 23(6): 832-840, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36708927

RESUMEN

BACKGROUND CONTEXT: Patients with cervical spine disease suffer from upper limb disability. At present, no clinical benchmarks exist for clinically meaningful change in the upper limb function following cervical spine surgery. PURPOSE: Primary: to establish clinically meaningful metrics; the minimal clinically important difference (MCID) and substantial clinical benefit (SCB) of upper limb functional improvement in patients following cervical spine surgery. Secondary: to identify the prognostic factors of MCID and SCB of upper limb function following cervical spine surgery. STUDY DESIGN: Retrospective cohort study. PATIENT SAMPLE: Adult patients ≥18 years of age who underwent cervical spine surgery from 2012 to 2016. OUTCOME MEASURES: Patient-reported outcomes: Neck disability index (NDI) and Disabilities of Arm, Shoulder, and Hand (DASH). METHODS: MCID was defined as minimal improvement and SCB as substantial improvement in the DASH score at last follow-up. The anchor-based methods (ROC analyses) defined optimal MCID and SCB thresholds with area under curve (AUC) in discriminating improved vs. non-improved patients. The MCID was also calculated by distribution-based methods: half standard-deviation (0.5-SD) and standard error of the mean (SEM) method. A multivariable logistic regression evaluated the impact of baseline factors in achieving the MCID and SCB in DASH following cervical spine surgery. RESULTS: Between 2012 and 2016, 1,046 patients with average age of 57±11.3 years, 53% males, underwent cervical spine surgery. Using the ROC analysis, the threshold for MCID was -8 points with AUC of 0.73 (95% CI: 0.67-0.79) and the SCB was -18 points with AUC of 0.88 (95% confidence interval [CI]: 0.85-0.91). The MCID was -11 points by 0.5-SD and -12 points by SEM-method. On multivariable analysis, patients with myelopathy had lower odds of achieving MCID and SCB, whereas older patients and those with ≥6 months duration of symptoms had lower odds of achieving DASH MCID and SCB respectively. CONCLUSIONS: In patients undergoing cervical spine surgery, MCID of -8 points and SCB of -18 points in DASH improvement may be considered clinically significant. These metrics may enable evaluation of minimal and substantial improvement in the upper extremity function following cervical spine surgery.


Asunto(s)
Brazo , Hombro , Adulto , Masculino , Humanos , Persona de Mediana Edad , Anciano , Femenino , Hombro/cirugía , Estudios Retrospectivos , Resultado del Tratamiento , Extremidad Superior , Vértebras Cervicales/cirugía
15.
Int J Spine Surg ; 17(1): 95-102, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36697205

RESUMEN

BACKGROUND: Direct current electrical stimulation may serve as a promising nonpharmacological adjunct promoting osteogenesis and fusion. The aim of this study was to evaluate the utility of electroactive spine instrumentation in the focal delivery of therapeutic electrical stimulation to enhance lumbar bone formation and interbody fusion. METHODS: A finite element model of adult human lumbar spine (L4-L5) instrumented with single-level electroactive pedicle screws was simulated. Direct current electrical stimulation was routed through anodized electroactive pedicle screws to target regions of fusion. The electrical fields generated by electroactive pedicle screws were evaluated in various tissue compartments including isotropic tissue volumes, cortical, and trabecular bone. Electrical field distributions at various stimulation amplitudes (20-100 µA) and pedicle screw anodization patterns were analyzed in target regions of fusion (eg, intervertebral disc space, vertebral body, and pedicles). RESULTS: Electrical stimulation with electroactive pedicle screws at various stimulation amplitudes and anodization patterns enabled modulation of spatial distribution and intensity of electric fields within the target regions of lumbar spine. Anodized screws (50%) vs unanodized screws (0%) induced high-amplitude electric fields within the intervertebral disc space and vertebral body but negligible electric fields in spinal canal. Direct current electrical stimulation via anodized screws induced electrical fields, at therapeutic threshold of >1 mV/cm, sufficient for osteoinduction within the target interbody region. CONCLUSIONS: Selective anodization of electroactive pedicle screws may enable focal delivery of therapeutic electrical stimulation in the target regions in human lumbar spine. This study warrants preclinical and clinical testing of integrated electroactive system in inducing target lumbar fusion in vivo. CLINICAL RELEVANCE: The findings of this study provide a foundation for clinically investigating electroactive intrumentation to enhance spine fusion.

16.
Oper Neurosurg (Hagerstown) ; 24(4): 445-450, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36715998

RESUMEN

BACKGROUND: Mechanomyography (MMG) is a novel intraoperative tool to detect and quantify nerve activity with high sensitivity as compared with traditional electromyographic recordings. MMG reflects the mechanical vibrations of single motor units detected through accelerometer sensors after direct motor neuron stimulation. OBJECTIVE: To determine the feasibility of applying intraoperative MMG during peripheral nerve surgery. METHODS: A total of 20 consecutive patients undergoing surgical decompression of the ulnar nerve at the cubital tunnel or common peroneal nerve at the fibular head were included in this study. Intraoperatively, the common peroneal and ulnar nerves were directly stimulated through the MMG electrode probe starting at 0.1 mA threshold and increasing by 0.1 mA increments until target muscle activity was noted. The lowest threshold current required to elicit a muscle response was recorded before decompression and after proximal and distal nerve decompression. RESULTS: Of the patients, 80% (16/20) had MMG signals detected and recorded. Four patients were unable to have MMG signal detected despite direct nerve visualization and complete neurolysis. The mean predecompression stimulus threshold was 1.59 ± 0.19 mA. After surgical decompression, improvement in the mean MMG stimulus threshold was noted (0.47 ± 0.03 mA, P = .0002). Postoperatively, all patients endorsed symptomatic improvement with no complications. CONCLUSION: MMG may provide objective guidance for the intraoperative determination of the extent of nerve decompression. Lower stimulus thresholds may represent increased sparing of axonal tissue. Future work should focus on validating normative values of MMG stimulus thresholds in various nerves and establishing clinical associations with functional outcomes.


Asunto(s)
Procedimientos Neuroquirúrgicos , Nervio Cubital , Humanos , Nervio Cubital/cirugía , Músculo Esquelético , Descompresión Quirúrgica
17.
Neurosurgery ; 92(1): 92-101, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519860

RESUMEN

BACKGROUND: Despite an increased understanding of the impact of socioeconomic status on neurosurgical outcomes, the impact of neighborhood-level social determinants on lumbar spine surgery patient-reported outcomes remains unknown. OBJECTIVE: To evaluate the impact of geographic social deprivation on physical and mental health of lumbar surgery patients. METHODS: A single-center retrospective cohort study analyzing patients undergoing lumbar surgery for degenerative disease from 2015 to 2018 was performed. Surgeries were categorized as decompression only or decompression with fusion. The area deprivation index was used to define social deprivation. Study outcomes included preoperative and change in Patient-Reported Outcomes Measurement (PROMIS) physical function (PF), pain interference (PI), depression, and anxiety (mean follow-up: 43.3 weeks). Multivariable imputation was performed for missing data. One-way analysis of variance and multivariable linear regression were used to evaluate the association between area deprivation index and PROMIS scores. RESULTS: In our cohort of 2010 patients, those with the greatest social deprivation had significantly worse mean preoperative PROMIS scores compared with the least-deprived cohort (mean difference [95% CI]-PF: -2.5 [-3.7 to -1.4]; PI: 3.0 [2.0-4.1]; depression: 5.5 [3.4-7.5]; anxiety: 6.0 [3.8-8.2], all P < .001), without significant differences in change in these domains at latest follow-up (PF: +0.5 [-1.2 to 2.2]; PI: -0.2 [-1.7 to 2.1]; depression: -2 [-4.0 to 0.1]; anxiety: -2.6 [-4.9 to 0.4], all P > .05). CONCLUSION: Lumbar spine surgery patients with greater social deprivation present with worse preoperative physical and mental health but experience comparable benefit from surgery than patients with less deprivation, emphasizing the need to further understand social and health factors that may affect both disease severity and access to care.


Asunto(s)
Medición de Resultados Informados por el Paciente , Disparidades Socioeconómicas en Salud , Humanos , Estudios Retrospectivos , Procedimientos Neuroquirúrgicos , Región Lumbosacra/cirugía
18.
Neurosurgery ; 92(1): 102-109, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519861

RESUMEN

BACKGROUND: Diffusion basis spectrum imaging (DBSI) is a noninvasive quantitative imaging modality that may improve understanding of cervical spondylotic myelopathy (CSM) pathology through detailed evaluations of spinal cord microstructural compartments. OBJECTIVE: To determine the utility of DBSI as a biomarker of CSM disease severity. METHODS: A single-center prospective cohort study enrolled 50 patients with CSM and 20 controls from 2018 to 2020. All patients underwent clinical evaluation and diffusion-weighted MRI, followed by diffusion tensor imaging and DBSI analyses. Diffusion-weighted MRI metrics assessed white matter integrity by fractional anisotropy, axial diffusivity, radial diffusivity, and fiber fraction. In addition, DBSI further evaluates extra-axonal changes by isotropic restricted and nonrestricted fraction. Including an intra-axonal diffusion compartment, DBSI improves estimations of axonal injury through intra-axonal axial diffusivity. Patients were categorized into mild, moderate, and severe CSM using modified Japanese Orthopedic Association classifications. Imaging parameters were compared among patient groups using independent samples t tests and ANOVA. RESULTS: Twenty controls, 27 mild (modified Japanese Orthopedic Association 15-17), 12 moderate (12-14), and 11 severe (0-11) patients with CSM were enrolled. Diffusion tensor imaging and DBSI fractional anisotropy, axial diffusivity, and radial diffusivity were significantly different between control and patients with CSM ( P < .05). DBSI fiber fraction, restricted fraction, and nonrestricted fraction were significantly different between groups ( P < .01). DBSI intra-axonal axial diffusivity was lower in mild compared with moderate (mean difference [95% CI]: 1.1 [0.3-2.1], P < .01) and severe (1.9 [1.3-2.4], P < .001) CSM. CONCLUSION: DBSI offers granular data on white matter tract integrity in CSM that provide novel insights into disease pathology, supporting its potential utility as a biomarker of CSM disease progression.


Asunto(s)
Enfermedades de la Médula Espinal , Espondilosis , Humanos , Imagen de Difusión Tensora/métodos , Espondilosis/diagnóstico por imagen , Estudios Prospectivos , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/patología , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/patología , Imagen de Difusión por Resonancia Magnética , Biomarcadores
19.
Spine J ; 23(4): 504-512, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36509379

RESUMEN

BACKGROUND CONTEXT: A major shortcoming in improving care for cervical spondylotic myelopathy (CSM) patients is the lack of robust quantitative imaging tools to guide surgical decision-making. Diffusion basis spectrum imaging (DBSI), an advanced diffusion-weighted MRI technique, provides objective assessments of white matter tract integrity that may help prognosticate outcomes in patients undergoing surgery for CSM. PURPOSE: To examine the ability of DBSI to predict clinically important CSM outcome measures at 2-years follow-up. STUDY DESIGN/SETTING: Prospective cohort study. PATIENT SAMPLE: Patients undergoing decompressive cervical surgery for CSM. OUTCOME MEASURES: Neurofunctional status was assessed by the mJOA, MDI, and DASH. Quality-of-life was measured by the SF-36 PCS and SF-36 MCS. The NDI evaluated self-reported neck pain, and patient satisfaction was assessed by the NASS satisfaction index. METHODS: Fifty CSM patients who underwent cervical decompressive surgery were enrolled. Preoperative DBSI metrics assessed white matter tract integrity through fractional anisotropy, fiber fraction, axial diffusivity, and radial diffusivity. To evaluate extra-axonal diffusion, DBSI measures restricted and nonrestricted fractions. Patient-reported outcome measures were evaluated preoperatively and up to 2-years follow-up. Support vector machine classification algorithms were used to predict surgical outcomes at 2-years follow-up. Specifically, three feature sets were built for each of the seven clinical outcome measures (eg, mJOA), including clinical only, DBSI only, and combined feature sets. RESULTS: Twenty-seven mild (mJOA 15-17), 12 moderate (12-14) and 11 severe (0-11) CSM patients were enrolled. Twenty-four (60%) patients underwent anterior decompressive surgery compared with 16 (40%) posterior approaches. The mean (SD) follow-up was 23.2 (5.6, range 6.1-32.8) months. Feature sets built on combined data (ie, clinical+DBSI metrics) performed significantly better for all outcome measures compared with those only including clinical or DBSI data. When predicting improvement in the mJOA, the clinically driven feature set had an accuracy of 61.9 [61.6, 62.5], compared with 78.6 [78.4, 79.2] in the DBSI feature set, and 90.5 [90.2, 90.8] in the combined feature set. CONCLUSIONS: When combined with key clinical covariates, preoperative DBSI metrics predicted improvement after surgical decompression for CSM with high accuracy for multiple outcome measures. These results suggest that DBSI may serve as a noninvasive imaging biomarker for CSM valuable in guiding patient selection and informing preoperative counseling. LEVEL OF EVIDENCE: II.


Asunto(s)
Enfermedades de la Médula Espinal , Espondilosis , Humanos , Estudios Prospectivos , Espondilosis/diagnóstico por imagen , Espondilosis/cirugía , Enfermedades de la Médula Espinal/diagnóstico por imagen , Enfermedades de la Médula Espinal/cirugía , Biomarcadores , Vértebras Cervicales/diagnóstico por imagen , Vértebras Cervicales/cirugía , Resultado del Tratamiento
20.
J Neurosurg ; 139(1): 255-265, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36585865

RESUMEN

OBJECTIVE: The Neurosurgery Research and Education Foundation (NREF) provides diverse funding opportunities for in-training and early-career neurosurgeon-scientists. The authors analyzed the impact of NREF funding on the subsequent career success of neurosurgeons in obtaining research funding and academic achievements. METHODS: The NREF database was queried to identify NREF winners from 2000 to 2015. The award recipients were surveyed to obtain information about their demographic characteristics, academic career, and research funding. Only subsequent research support with an annual funding amount of $50,000 or greater was included. The primary outcome was the NREF impact ratio, defined as the ratio between NREF award research dollars and subsequent grant funding dollars. The secondary outcomes were time to subsequent grant funding as principal investigator (PI), clinical practice settings, and final academic position achieved. RESULTS: From 2000 to 2015, 158 neurosurgeons received 164 NREF awards totaling $8.3 million (M), with $1.7 M awarded to 46 Young Clinician Investigators (YCIs), $1.5 M to 18 Van Wagenen Fellows (VWFs), and $5.1 M to 100 resident Research Fellowship Grant (RFG) awardees. Of all awardees, 73% have current academic appointments, and the mean ± SD number of publications and H-index were 71 ± 82 and 20 ± 15, respectively. The overall response rate to our survey was 70%, and these respondents became the cohort for our analysis. In total, respondents cumulatively obtained $776 M in post-NREF award grant funding, with the most common sources of funding including the National Institutes of Health ($327 M) and foundational awards ($306 M). The NREF impact ratios for awardees were $1:$381 for YCI, $1:$113 for VWF, and $1:$41 for resident RFG. Awardees with NREF projects in functional neurosurgery, pediatric neurosurgery, and neuro-oncology had the highest NREF impact ratios of $1:$194, $1:$185, and $1:$162, respectively. Of respondents, 9% became department chairs, 26% became full professors, 82% received at least 1 subsequent research grant, and 66% served as PI on a subsequent research grant after receiving their NREF awards. CONCLUSIONS: In-training and early-career neurosurgeons who were awarded NREF funding had significant success in acquiring subsequent grant support, research productivity, and achievements of academic rank. NREF grants provide a tremendous return on investment across various career stages and subspecialities. They also appeared to have a broader impact on trajectory of research and innovation within the field of neurosurgery.


Asunto(s)
Distinciones y Premios , Investigación Biomédica , Neurocirugia , Estados Unidos , Humanos , Niño , Neurocirujanos , Organización de la Financiación , National Institutes of Health (U.S.)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...