Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Science ; 376(6595): eabn6204, 2022 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-35587969

RESUMEN

In the forebrain, ventrally derived oligodendrocyte precursor cells (vOPCs) travel tangentially toward the cortex together with cortical interneurons. Here, we tested in the mouse whether these populations interact during embryogenesis while migrating. By coupling histological analysis of genetic models with live imaging, we show that although they are both attracted by the chemokine Cxcl12, vOPCs and cortical interneurons occupy mutually exclusive forebrain territories enriched in this chemokine. Moreover, first-wave vOPC depletion selectively disrupts the migration and distribution of cortical interneurons. At the cellular level, we found that by promoting unidirectional contact repulsion, first-wave vOPCs steered the migration of cortical interneurons away from the blood vessels to which they were both attracted, thereby allowing interneurons to reach their proper cortical territories.


Asunto(s)
Movimiento Celular , Corteza Cerebral , Interneuronas , Neurogénesis , Células Precursoras de Oligodendrocitos , Animales , Movimiento Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/embriología , Quimiocina CXCL12/metabolismo , Interneuronas/fisiología , Ratones , Modelos Genéticos , Neurogénesis/genética , Células Precursoras de Oligodendrocitos/citología , Células Precursoras de Oligodendrocitos/fisiología
2.
EMBO J ; 40(23): e109935, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34751964

RESUMEN

While key developmental functions of neurotransmitters have been described in rodent neural progenitors, there is a lack of understanding of their roles in the human fetal brain. A new study published in The EMBO Journal demonstrates that human cortical interneurons that are moving in fused brain organoids express a large repertoire of neurotransmitter receptors whose activation fine tunes selective migration strategies.


Asunto(s)
Interneuronas , Neurogénesis , Movimiento Celular , Humanos , Neurotransmisores , Organoides
3.
Trends Neurosci ; 44(2): 110-121, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33203515

RESUMEN

During brain development, progenitors generate successive waves of neurons that populate distinct cerebral regions, where they settle and differentiate within layers or nuclei. While migrating and differentiating, neurons are subjected to mechanical forces arising from the extracellular matrix, and their interaction with neighboring cells. Changes in brain biomechanical properties, during its formation or aging, are converted in neural cells by mechanotransduction into intracellular signals that control key neurobiological processes. Here, we summarize recent findings that support the contribution of mechanobiology to neurodevelopment, with focus on the cerebral cortex. Also discussed are the existing toolbox and emerging technologies made available to assess and manipulate the physical properties of neurons and their environment.


Asunto(s)
Matriz Extracelular , Mecanotransducción Celular , Encéfalo
4.
Cells ; 9(9)2020 08 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825197

RESUMEN

Myosins are motor proteins that use chemical energy to produce mechanical forces driving actin cytoskeletal dynamics. In the brain, the conventional non-muscle myosin II (NMII) regulates actin filament cytoskeletal assembly and contractile forces during structural remodeling of axons and dendrites, contributing to morphology, polarization, and migration of neurons during brain development. NMII isoforms also participate in neurotransmission and synaptic plasticity by driving actin cytoskeletal dynamics during synaptic vesicle release and retrieval, and formation, maturation, and remodeling of dendritic spines. NMIIs are expressed differentially in cerebral non-neuronal cells, such as microglia, astrocytes, and endothelial cells, wherein they play key functions in inflammation, myelination, and repair. Besides major efforts to understand the physiological functions and regulatory mechanisms of NMIIs in the nervous system, their contributions to brain pathologies are still largely unclear. Nonetheless, genetic mutations or deregulation of NMII and its regulatory effectors are linked to autism, schizophrenia, intellectual disability, and neurodegeneration, indicating non-conventional roles of NMIIs in cellular mechanisms underlying neurodevelopmental and neurodegenerative disorders. Here, we summarize the emerging biological roles of NMIIs in the brain, and discuss how actomyosin signaling contributes to dysfunction of neurons and glial cells in the context of neurological disorders. This knowledge is relevant for a deep understanding of NMIIs on the pathogenesis and therapeutics of neuropsychiatric and neurodegenerative diseases.


Asunto(s)
Miosina Tipo II/metabolismo , Neurogénesis/genética , Humanos
5.
Elife ; 82019 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-31577226

RESUMEN

EphA/ephrin signaling regulates axon growth and guidance of neurons, but whether this process occurs also independently of ephrins is unclear. We show that presenilin-1 (PS1)/γ-secretase is required for axon growth in the developing mouse brain. PS1/γ-secretase mediates axon growth by inhibiting RhoA signaling and cleaving EphA3 independently of ligand to generate an intracellular domain (ICD) fragment that reverses axon defects in PS1/γ-secretase- and EphA3-deficient hippocampal neurons. Proteomic analysis revealed that EphA3 ICD binds to non-muscle myosin IIA (NMIIA) and increases its phosphorylation (Ser1943), which promotes NMIIA filament disassembly and cytoskeleton rearrangement. PS1/γ-secretase-deficient neurons show decreased phosphorylated NMIIA and NMIIA/actin colocalization. Moreover, pharmacological NMII inhibition reverses axon retraction in PS-deficient neurons suggesting that NMIIA mediates PS/EphA3-dependent axon elongation. In conclusion, PS/γ-secretase-dependent EphA3 cleavage mediates axon growth by regulating filament assembly through RhoA signaling and NMIIA, suggesting opposite roles of EphA3 on inhibiting (ligand-dependent) and promoting (receptor processing) axon growth in developing neurons.


Asunto(s)
Axones/fisiología , Miosina Tipo IIA no Muscular/metabolismo , Presenilina-1/metabolismo , Receptor EphA3/metabolismo , Animales , Células Cultivadas , Humanos , Ratones , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo
6.
Neurobiol Dis ; 124: 428-438, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30594809

RESUMEN

ErbB4 is a transmembrane receptor tyrosine kinase that binds to neuregulins to activate signaling. Proteolytic cleavage of ErbB4 results in release of soluble fragments of ErbB4 into the interstitial fluid. Disruption of the neuregulin-ErbB4 pathway has been suggested to be involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). This study assesses whether soluble proteolytic fragments of the ErbB4 ectodomain (ecto-ErbB4) can be detected in cerebrospinal fluid (CSF) and plasma, and if the levels are altered in ALS. Immunoprecipitation combined with mass spectrometry or western blotting analyses confirmed the presence of ecto-ErbB4 in human CSF. Several anti-ErbB4-reactive bands, including a 55 kDa fragment, were detected in CSF. The bands were generated in the presence of neuregulin-1 (Nrg1) and were absent in plasma from ErbB4 knockout mice. Ecto-ErbB4 levels were decreased in CSF from ALS patients (n = 20) and ALS with concomitant frontotemporal dementia patients (n = 10), compared to age-matched controls (n = 13). A similar decrease was found for the short ecto-ErbB4 fragments in plasma of the same subjects. Likewise, the 55-kDa ecto-ErbB4 fragments were decreased in the plasma of the two transgenic mouse models of ALS (SOD1G93A and TDP-43A315T). Intracellular ErbB4 fragments were decreased in the frontal cortex from SOD1G93A mice, indicating a reduction in Nrg-dependent induction of ErbB4 proteolytic processing, and suggesting impaired signaling. Accordingly, overexpression of Nrg1 induced by an adeno-associated viral vector increased the levels of the ecto-ErbB4 fragment in the SOD1G93A mice. We conclude that the determination of circulating ecto-ErbB4 fragments could be a tool to evaluate the impairment of the ErbB4 pathway and may be a useful biomarker in ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Biomarcadores/análisis , Receptor ErbB-4/metabolismo , Anciano , Animales , Femenino , Humanos , Masculino , Ratones , Ratones Transgénicos , Persona de Mediana Edad , Fragmentos de Péptidos/análisis , Fragmentos de Péptidos/metabolismo , Receptor ErbB-4/análisis , Transducción de Señal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...