Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
Cell Stem Cell ; 30(4): 396-414.e9, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-37028405

RESUMEN

Human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) offer a promising cell-based therapy for myocardial infarction. However, the presence of transitory ventricular arrhythmias, termed engraftment arrhythmias (EAs), hampers clinical applications. We hypothesized that EA results from pacemaker-like activity of hPSC-CMs associated with their developmental immaturity. We characterized ion channel expression patterns during maturation of transplanted hPSC-CMs and used pharmacology and genome editing to identify those responsible for automaticity in vitro. Multiple engineered cell lines were then transplanted in vivo into uninjured porcine hearts. Abolishing depolarization-associated genes HCN4, CACNA1H, and SLC8A1, along with overexpressing hyperpolarization-associated KCNJ2, creates hPSC-CMs that lack automaticity but contract when externally stimulated. When transplanted in vivo, these cells engrafted and coupled electromechanically with host cardiomyocytes without causing sustained EAs. This study supports the hypothesis that the immature electrophysiological prolife of hPSC-CMs mechanistically underlies EA. Thus, targeting automaticity should improve the safety profile of hPSC-CMs for cardiac remuscularization.


Asunto(s)
Edición Génica , Miocitos Cardíacos , Humanos , Animales , Porcinos , Miocitos Cardíacos/metabolismo , Línea Celular , Arritmias Cardíacas/genética , Arritmias Cardíacas/terapia , Arritmias Cardíacas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos , Diferenciación Celular/genética
3.
Stem Cell Reports ; 16(10): 2473-2487, 2021 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-34506727

RESUMEN

Heart failure remains a significant cause of morbidity and mortality following myocardial infarction. Cardiac remuscularization with transplantation of human pluripotent stem cell-derived cardiomyocytes is a promising preclinical therapy to restore function. Recent large animal data, however, have revealed a significant risk of engraftment arrhythmia (EA). Although transient, the risk posed by EA presents a barrier to clinical translation. We hypothesized that clinically approved antiarrhythmic drugs can prevent EA-related mortality as well as suppress tachycardia and arrhythmia burden. This study uses a porcine model to provide proof-of-concept evidence that a combination of amiodarone and ivabradine can effectively suppress EA. None of the nine treated subjects experienced the primary endpoint of cardiac death, unstable EA, or heart failure compared with five out of eight (62.5%) in the control cohort (hazard ratio = 0.00; 95% confidence interval: 0-0.297; p = 0.002). Pharmacologic treatment of EA may be a viable strategy to improve safety and allow further clinical development of cardiac remuscularization therapy.


Asunto(s)
Amiodarona/uso terapéutico , Arritmias Cardíacas/tratamiento farmacológico , Ivabradina/uso terapéutico , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/trasplante , Trasplante de Células Madre/efectos adversos , Taquicardia/tratamiento farmacológico , Animales , Antiarrítmicos/uso terapéutico , Línea Celular , Tratamiento Basado en Trasplante de Células y Tejidos/efectos adversos , Modelos Animales de Enfermedad , Combinación de Medicamentos , Humanos , Masculino , Células Madre Pluripotentes/trasplante , Porcinos
4.
Transl Vis Sci Technol ; 6(3): 4, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28516002

RESUMEN

PURPOSE: Previous studies have demonstrated the ability of retinal cells derived from human embryonic stem cells (hESCs) to survive, integrate into the host retina, and mediate light responses in murine mouse models. Our aim is to determine whether these cells can also survive and integrate into the retina of a nonhuman primate, Saimiri sciureus, following transplantation into the subretinal space. METHODS: hESCs were differentiated toward retinal neuronal fates using our previously published technique and cultured for 60 to 70 days. Differentiated cells were further treated with 20 µM N-[N-(3,5-Difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (DAPT) for a period of 5 days immediately prior to subretinal transplantation. Differentiated cells were labeled with a lentivirus expressing GFP. One million cells (10,000 cells/µL) were injected into the submacular space into a squirrel monkey eye, using an ab externo technique. RESULTS: RetCam imaging demonstrated the presence and survival of human donor cells 3 months after transplantation in the S. sciureus eye. Injected cells consolidated in the temporal macula. GFP+ axonal projections were observed to emanate from the central consolidation of cells at 1 month, with some projecting into the optic nerve by 3 months after transplantation. CONCLUSIONS: Human ES cell-derived retinal neurons injected into the submacular space of a squirrel monkey survive at least 3 months postinjection without immunosuppression. Some donor cells appeared to integrate into the host inner retina, and numerous donor axonal projections were noted throughout, with some projecting into the optic nerve. TRANSLATIONAL RELEVANCE: These data illustrate the feasibility of hESC-derived retinal cell replacement in the nonhuman primate eye.

5.
Cell Stem Cell ; 20(1): 120-134, 2017 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-28094016

RESUMEN

During human brain development, multiple signaling pathways generate diverse cell types with varied regional identities. Here, we integrate single-cell RNA sequencing and clonal analyses to reveal lineage trees and molecular signals underlying early forebrain and mid/hindbrain cell differentiation from human embryonic stem cells (hESCs). Clustering single-cell transcriptomic data identified 41 distinct populations of progenitor, neuronal, and non-neural cells across our differentiation time course. Comparisons with primary mouse and human gene expression data demonstrated rostral and caudal progenitor and neuronal identities from early brain development. Bayesian analyses inferred a unified cell-type lineage tree that bifurcates between cortical and mid/hindbrain cell types. Two methods of clonal analyses confirmed these findings and further revealed the importance of Wnt/ß-catenin signaling in controlling this lineage decision. Together, these findings provide a rich transcriptome-based lineage map for studying human brain development and modeling developmental disorders.


Asunto(s)
Encéfalo/embriología , Linaje de la Célula , Desarrollo Embrionario , Células Madre Embrionarias Humanas/citología , Análisis de la Célula Individual/métodos , Animales , Encéfalo/metabolismo , Línea Celular , Linaje de la Célula/genética , Células Clonales , Desarrollo Embrionario/genética , Humanos , Ratones , Modelos Biológicos , Neuronas/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Transcriptoma/genética , Vía de Señalización Wnt/genética
6.
Methods Mol Biol ; 884: 229-46, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22688710

RESUMEN

Over the last few years, numerous studies have introduced strategies for the generation of neuronal populations from embryonic stem cells. These techniques are valuable both in the study of early neurogenesis and in the generation of an unlimited source of donor cells for replacement therapies. We have developed a protocol to direct mouse and human embryonic stem cells to retinal fates by using the current model of eye specification. Our method is a multistep protocol in which the cultures are treated with IGF1 and a combination of BMP and Wnt inhibitors to promote the expression of key retinal progenitor genes, as assayed by RT-PCR and immunofluorescence microscopy. The retinal progenitor population spontaneously undergoes differentiation towards various types of retinal neurons, including photoreceptors.


Asunto(s)
Células Madre Embrionarias/citología , Retina/citología , Trasplante de Células Madre , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Humanos , Inmunohistoquímica , Ratones , Microinyecciones , Reacción en Cadena en Tiempo Real de la Polimerasa , Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA