Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Physiol ; 15: 1366910, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38812881

RESUMEN

Introduction: Eye movement is one of the cues used in human-machine interface technologies for predicting the intention of users. The developing application in eye movement event detection is the creation of assistive technologies for paralyzed patients. However, developing an effective classifier is one of the main issues in eye movement event detection. Methods: In this paper, bidirectional long short-term memory (BILSTM) is proposed along with hyperparameter tuning for achieving effective eye movement event classification. The Lévy flight and interactive crossover-based reptile search algorithm (LICRSA) is used for optimizing the hyperparameters of BILSTM. The issues related to overfitting are avoided by using fuzzy data augmentation (FDA), and a deep neural network, namely, VGG-19, is used for extracting features from eye movements. Therefore, the optimization of hyperparameters using LICRSA enhances the classification of eye movement events using BILSTM. Results and Discussion: The proposed BILSTM-LICRSA is evaluated by using accuracy, precision, sensitivity, F1-score, area under the receiver operating characteristic (AUROC) curve measure, and area under the precision-recall curve (AUPRC) measure for four datasets, namely, Lund2013, collected dataset, GazeBaseR, and UTMultiView. The gazeNet, human manual classification (HMC), and multi-source information-embedded approach (MSIEA) are used for comparison with the BILSTM-LICRSA. The F1-score of BILSTM-LICRSA for the GazeBaseR dataset is 98.99%, which is higher than that of the MSIEA.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA