Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
bioRxiv ; 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38798338

RESUMEN

Multiple Myeloma (MM) remains incurable despite advances in treatment options. Although tumor subtypes and specific DNA abnormalities are linked to worse prognosis, the impact of immune dysfunction on disease emergence and/or treatment sensitivity remains unclear. We established a harmonized consortium to generate an Immune Atlas of MM aimed at informing disease etiology, risk stratification, and potential therapeutic strategies. We generated a transcriptome profile of 1,149,344 single cells from the bone marrow of 263 newly diagnosed patients enrolled in the CoMMpass study and characterized immune and hematopoietic cell populations. Associating cell abundances and gene expression with disease progression revealed the presence of a proinflammatory immune senescence-associated secretory phenotype in rapidly progressing patients. Furthermore, signaling analyses suggested active intercellular communication involving APRIL-BCMA, potentially promoting tumor growth and survival. Finally, we demonstrate that integrating immune cell levels with genetic information can significantly improve patient stratification.

2.
NAR Cancer ; 5(4): zcad055, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38023733

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is highly heterogeneous and lethal. Long noncoding RNAs (lncRNAs) are an important class of genes regulating tumorigenesis and progression. Prior bulk transcriptomic studies in PDAC have revealed the dysregulation of lncRNAs but lack single-cell resolution to distinguish lncRNAs in tumor-intrinsic biology and the tumor microenvironment (TME). We analyzed single-cell transcriptome data from 73 multiregion samples in 21 PDAC patients to evaluate lncRNAs associated with intratumoral heterogeneity and the TME in PDAC. We found 111 cell-specific lncRNAs that reflected tumor, immune and stromal cell contributions, associated with outcomes, and validated across orthogonal datasets. Single-cell analysis of tumor cells revealed lncRNAs associated with TP53 mutations and FOLFIRINOX treatment that were obscured in bulk tumor analysis. Lastly, tumor subcluster analysis revealed widespread intratumor heterogeneity and intratumoral lncRNAs associated with cancer hallmarks and tumor processes such as angiogenesis, epithelial-mesenchymal transition, metabolism and immune signaling. Intratumoral subclusters and lncRNAs were validated across six datasets and showed clinically relevant associations with patient outcomes. Our study provides the first comprehensive assessment of the lncRNA landscape in PDAC using single-cell transcriptomic data and can serve as a resource, PDACLncDB (accessible at https://www.maherlab.com/pdaclncdb-overview), to guide future functional studies.

3.
bioRxiv ; 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37961519

RESUMEN

Breast cancer is a heterogeneous disease, and treatment is guided by biomarker profiles representing distinct molecular subtypes. Breast cancer arises from the breast ductal epithelium, and experimental data suggests breast cancer subtypes have different cells of origin within that lineage. The precise cells of origin for each subtype and the transcriptional networks that characterize these tumor-normal lineages are not established. In this work, we applied bulk, single-cell (sc), and single-nucleus (sn) multi-omic techniques as well as spatial transcriptomics and multiplex imaging on 61 samples from 37 breast cancer patients to show characteristic links in gene expression and chromatin accessibility between breast cancer subtypes and their putative cells of origin. We applied the PAM50 subtyping algorithm in tandem with bulk RNA-seq and snRNA-seq to reliably subtype even low-purity tumor samples and confirm promoter accessibility using snATAC. Trajectory analysis of chromatin accessibility and differentially accessible motifs clearly connected progenitor populations with breast cancer subtypes supporting the cell of origin for basal-like and luminal A and B tumors. Regulatory network analysis of transcription factors underscored the importance of BHLHE40 in luminal breast cancer and luminal mature cells, and KLF5 in basal-like tumors and luminal progenitor cells. Furthermore, we identify key genes defining the basal-like ( PRKCA , SOX6 , RGS6 , KCNQ3 ) and luminal A/B ( FAM155A , LRP1B ) lineages, with expression in both precursor and cancer cells and further upregulation in tumors. Exhausted CTLA4-expressing CD8+ T cells were enriched in basal-like breast cancer, suggesting altered means of immune dysfunction among breast cancer subtypes. We used spatial transcriptomics and multiplex imaging to provide spatial detail for key markers of benign and malignant cell types and immune cell colocation. These findings demonstrate analysis of paired transcription and chromatin accessibility at the single cell level is a powerful tool for investigating breast cancer lineage development and highlight transcriptional networks that define basal and luminal breast cancer lineages.

4.
Nature ; 623(7986): 432-441, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914932

RESUMEN

Chromatin accessibility is essential in regulating gene expression and cellular identity, and alterations in accessibility have been implicated in driving cancer initiation, progression and metastasis1-4. Although the genetic contributions to oncogenic transitions have been investigated, epigenetic drivers remain less understood. Here we constructed a pan-cancer epigenetic and transcriptomic atlas using single-nucleus chromatin accessibility data (using single-nucleus assay for transposase-accessible chromatin) from 225 samples and matched single-cell or single-nucleus RNA-sequencing expression data from 206 samples. With over 1 million cells from each platform analysed through the enrichment of accessible chromatin regions, transcription factor motifs and regulons, we identified epigenetic drivers associated with cancer transitions. Some epigenetic drivers appeared in multiple cancers (for example, regulatory regions of ABCC1 and VEGFA; GATA6 and FOX-family motifs), whereas others were cancer specific (for example, regulatory regions of FGF19, ASAP2 and EN1, and the PBX3 motif). Among epigenetically altered pathways, TP53, hypoxia and TNF signalling were linked to cancer initiation, whereas oestrogen response, epithelial-mesenchymal transition and apical junction were tied to metastatic transition. Furthermore, we revealed a marked correlation between enhancer accessibility and gene expression and uncovered cooperation between epigenetic and genetic drivers. This atlas provides a foundation for further investigation of epigenetic dynamics in cancer transitions.


Asunto(s)
Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Neoplasias , Humanos , Hipoxia de la Célula , Núcleo Celular , Cromatina/genética , Cromatina/metabolismo , Elementos de Facilitación Genéticos/genética , Epigénesis Genética/genética , Transición Epitelial-Mesenquimal , Estrógenos/metabolismo , Perfilación de la Expresión Génica , Proteínas Activadoras de GTPasa/metabolismo , Metástasis de la Neoplasia , Neoplasias/clasificación , Neoplasias/genética , Neoplasias/patología , Secuencias Reguladoras de Ácidos Nucleicos/genética , Análisis de la Célula Individual , Factores de Transcripción/metabolismo
5.
Front Immunol ; 14: 1264496, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37744381

RESUMEN

Solid organ transplant represents a potentially lifesaving procedure for patients suffering from end-stage heart, lung, liver, and kidney failure. However, rejection remains a significant source of morbidity and immunosuppressive medications have significant toxicities. Janus kinase (JAK) inhibitors are effective immunosuppressants in autoimmune diseases and graft versus host disease after allogeneic hematopoietic cell transplantation. Here we examine the role of JAK inhibition in preclinical fully major histocompatibility mismatched skin and heart allograft models. Baricitinib combined with cyclosporine A (CsA) preserved fully major histocompatibility mismatched skin grafts for the entirety of a 111-day experimental period. In baricitinib plus CsA treated mice, circulating CD4+T-bet+ T cells, CD8+T-bet+ T cells, and CD4+FOXP3+ regulatory T cells were reduced. Single cell RNA sequencing revealed a unique expression profile in immune cells in the skin of baricitinib plus CsA treated mice, including decreased inflammatory neutrophils and increased CCR2- macrophages. In a fully major histocompatibility mismatched mismatched heart allograft model, baricitinib plus CsA prevented graft rejection for the entire 28-day treatment period compared with 9 days in controls. Our findings establish that the combination of baricitinib and CsA prevents rejection in allogeneic skin and heart graft models and supports the study of JAK inhibitors in human solid organ transplantation.


Asunto(s)
Ciclosporina , Trasplante de Corazón , Humanos , Animales , Ratones , Ciclosporina/uso terapéutico , Rechazo de Injerto/prevención & control , Trasplante de Corazón/efectos adversos , Sulfonamidas
6.
Cancer Cell ; 41(9): 1567-1585.e7, 2023 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-37582362

RESUMEN

DNA methylation plays a critical role in establishing and maintaining cellular identity. However, it is frequently dysregulated during tumor development and is closely intertwined with other genetic alterations. Here, we leveraged multi-omic profiling of 687 tumors and matched non-involved adjacent tissues from the kidney, brain, pancreas, lung, head and neck, and endometrium to identify aberrant methylation associated with RNA and protein abundance changes and build a Pan-Cancer catalog. We uncovered lineage-specific epigenetic drivers including hypomethylated FGFR2 in endometrial cancer. We showed that hypermethylated STAT5A is associated with pervasive regulon downregulation and immune cell depletion, suggesting that epigenetic regulation of STAT5A expression constitutes a molecular switch for immunosuppression in squamous tumors. We further demonstrated that methylation subtype-enrichment information can explain cell-of-origin, intra-tumor heterogeneity, and tumor phenotypes. Overall, we identified cis-acting DNA methylation events that drive transcriptional and translational changes, shedding light on the tumor's epigenetic landscape and the role of its cell-of-origin.


Asunto(s)
Metilación de ADN , Neoplasias Endometriales , Femenino , Humanos , Epigénesis Genética , Multiómica , Regulación Neoplásica de la Expresión Génica , Neoplasias Endometriales/genética
8.
Nat Med ; 29(4): 869-879, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37069359

RESUMEN

Autologous hematopoietic stem cell transplantation (ASCT) improves survival in multiple myeloma (MM). However, many individuals are unable to collect optimal CD34+ hematopoietic stem and progenitor cell (HSPC) numbers with granulocyte colony-stimulating factor (G-CSF) mobilization. Motixafortide is a novel cyclic-peptide CXCR4 inhibitor with extended in vivo activity. The GENESIS trial was a prospective, phase 3, double-blind, placebo-controlled, multicenter study with the objective of assessing the superiority of motixafortide + G-CSF over placebo + G-CSF to mobilize HSPCs for ASCT in MM. The primary endpoint was the proportion of patients collecting ≥6 × 106 CD34+ cells kg-1 within two apheresis procedures; the secondary endpoint was to achieve this goal in one apheresis. A total of 122 adult patients with MM undergoing ASCT were enrolled at 18 sites across five countries and randomized (2:1) to motixafortide + G-CSF or placebo + G-CSF for HSPC mobilization. Motixafortide + G-CSF enabled 92.5% to successfully meet the primary endpoint versus 26.2% with placebo + G-CSF (odds ratio (OR) 53.3, 95% confidence interval (CI) 14.12-201.33, P < 0.0001). Motixafortide + G-CSF also enabled 88.8% to meet the secondary endpoint versus 9.5% with placebo + G-CSF (OR 118.0, 95% CI 25.36-549.35, P < 0.0001). Motixafortide + G-CSF was safe and well tolerated, with the most common treatment-emergent adverse events observed being transient, grade 1/2 injection site reactions (pain, 50%; erythema, 27.5%; pruritis, 21.3%). In conclusion, motixafortide + G-CSF mobilized significantly greater CD34+ HSPC numbers within two apheresis procedures versus placebo + G-CSF while preferentially mobilizing increased numbers of immunophenotypically and transcriptionally primitive HSPCs. Trial Registration: ClinicalTrials.gov , NCT03246529.


Asunto(s)
Trasplante de Células Madre Hematopoyéticas , Compuestos Heterocíclicos , Mieloma Múltiple , Adulto , Humanos , Mieloma Múltiple/tratamiento farmacológico , Trasplante Autólogo , Estudios Prospectivos , Compuestos Heterocíclicos/farmacología , Compuestos Heterocíclicos/uso terapéutico , Movilización de Célula Madre Hematopoyética/métodos , Trasplante de Células Madre Hematopoyéticas/efectos adversos , Células Madre Hematopoyéticas/metabolismo , Antígenos CD34/metabolismo , Factor Estimulante de Colonias de Granulocitos/farmacología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Factores Inmunológicos/uso terapéutico
9.
Nat Commun ; 14(1): 1681, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973268

RESUMEN

Identifying tumor-cell-specific markers and elucidating their epigenetic regulation and spatial heterogeneity provides mechanistic insights into cancer etiology. Here, we perform snRNA-seq and snATAC-seq in 34 and 28 human clear cell renal cell carcinoma (ccRCC) specimens, respectively, with matched bulk proteogenomics data. By identifying 20 tumor-specific markers through a multi-omics tiered approach, we reveal an association between higher ceruloplasmin (CP) expression and reduced survival. CP knockdown, combined with spatial transcriptomics, suggests a role for CP in regulating hyalinized stroma and tumor-stroma interactions in ccRCC. Intratumoral heterogeneity analysis portrays tumor cell-intrinsic inflammation and epithelial-mesenchymal transition (EMT) as two distinguishing features of tumor subpopulations. Finally, BAP1 mutations are associated with widespread reduction of chromatin accessibility, while PBRM1 mutations generally increase accessibility, with the former affecting five times more accessible peaks than the latter. These integrated analyses reveal the cellular architecture of ccRCC, providing insights into key markers and pathways in ccRCC tumorigenesis.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Humanos , Carcinoma de Células Renales/patología , Neoplasias Renales/patología , Transcriptoma , Epigénesis Genética , Proteínas Supresoras de Tumor/genética , Regulación Neoplásica de la Expresión Génica
10.
Cancer Res ; 83(8): 1214-1233, 2023 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-36779841

RESUMEN

Multiple myeloma (MM) is a highly refractory hematologic cancer. Targeted immunotherapy has shown promise in MM but remains hindered by the challenge of identifying specific yet broadly representative tumor markers. We analyzed 53 bone marrow (BM) aspirates from 41 MM patients using an unbiased, high-throughput pipeline for therapeutic target discovery via single-cell transcriptomic profiling, yielding 38 MM marker genes encoding cell-surface proteins and 15 encoding intracellular proteins. Of these, 20 candidate genes were highlighted that are not yet under clinical study, 11 of which were previously uncharacterized as therapeutic targets. The findings were cross-validated using bulk RNA sequencing, flow cytometry, and proteomic mass spectrometry of MM cell lines and patient BM, demonstrating high overall concordance across data types. Independent discovery using bulk RNA sequencing reiterated top candidates, further affirming the ability of single-cell transcriptomics to accurately capture marker expression despite limitations in sample size or sequencing depth. Target dynamics and heterogeneity were further examined using both transcriptomic and immuno-imaging methods. In summary, this study presents a robust and broadly applicable strategy for identifying tumor markers to better inform the development of targeted cancer therapy. SIGNIFICANCE: Single-cell transcriptomic profiling and multiomic cross-validation to uncover therapeutic targets identifies 38 myeloma marker genes, including 11 transcribing surface proteins with previously uncharacterized potential for targeted antitumor therapy.


Asunto(s)
Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Multiómica , Proteómica , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica/métodos
11.
NPJ Genom Med ; 8(1): 3, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36702834

RESUMEN

Despite advancements in understanding the pathophysiology of Multiple Myeloma (MM), the cause of rapid progressing disease in a subset of patients is still unclear. MM's progression is facilitated by complex interactions with the surrounding bone marrow (BM) cells, forming a microenvironment that supports tumor growth and drug resistance. Understanding the immune microenvironment is key to identifying factors that promote rapid progression of MM. To accomplish this, we performed a multi-center single-cell RNA sequencing (scRNA-seq) study on 102,207 cells from 48 CD138- BM samples collected at the time of disease diagnosis from 18 patients with either rapid progressing (progression-free survival (PFS) < 18 months) or non-progressing (PFS > 4 years) disease. Comparative analysis of data from three centers demonstrated similar transcriptome profiles and cell type distributions, indicating subtle technical variation in scRNA-seq, opening avenues for an expanded multicenter trial. Rapid progressors depicted significantly higher enrichment of GZMK+ and TIGIT+ exhausted CD8+ T-cells (P = 0.022) along with decreased expression of cytolytic markers (PRF1, GZMB, GNLY). We also observed a significantly higher enrichment of M2 tolerogenic macrophages in rapid progressors and activation of pro-proliferative signaling pathways, such as BAFF, CCL, and IL16. On the other hand, non-progressive patients depicted higher enrichment for immature B Cells (i.e., Pre/Pro B cells), with elevated expression for markers of B cell development (IGLL1, SOX4, DNTT). This multi-center study identifies the enrichment of various pro-tumorigenic cell populations and pathways in those with rapid progressing disease and further validates the robustness of scRNA-seq data generated at different study centers.

12.
Blood ; 141(14): 1718-1723, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36563336

RESUMEN

Acute myeloid leukemia (AML) relapse is one of the most common and significant adverse events following allogeneic hematopoietic cell transplantation (HCT). Downregulation of major histocompatibility class II (MHC-II) surface expression on AML blasts may represent a mechanism of escape from the graft-versus-malignancy effect and facilitate relapse. We hypothesized that T-cell immunotherapies targeting AML antigens would upregulate MHC-II surface expression via localized release of interferon gamma (IFN-γ), a protein known to upregulate MHC-II expression via JAK-STAT signaling. We demonstrate that flotetuzumab (FLZ), a CD123 × CD3 bispecific DART molecule, and chimeric antigen receptor expressing T cells targeting CD123, CD33, or CD371 upregulate MHC-II surface expression in vitro on a THP-1 AML cell line with intermediate MHC-II expression and 4 primary AML samples from patients relapsing after HCT with low MHC-II expression. We additionally show that FLZ upregulates MHC-II expression in a patient-derived xenograft model and in patients with relapsed or refractory AML who were treated with FLZ in a clinical trial. Finally, we report that FLZ-induced MHC-II upregulation is mediated by IFN-γ. In conclusion, we provide evidence that T-cell immunotherapies targeting relapsed AML can kill AML via both MHC-independent mechanisms and by an MHC-dependent mechanism through local release of IFN-γ and subsequent upregulation of MHC-II expression.


Asunto(s)
Anticuerpos Biespecíficos , Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Linfocitos T , Subunidad alfa del Receptor de Interleucina-3 , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Interferón gamma , Complejo CD3 , Inmunoterapia , Recurrencia
13.
Nat Genet ; 54(9): 1390-1405, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35995947

RESUMEN

Pancreatic ductal adenocarcinoma is a lethal disease with limited treatment options and poor survival. We studied 83 spatial samples from 31 patients (11 treatment-naïve and 20 treated) using single-cell/nucleus RNA sequencing, bulk-proteogenomics, spatial transcriptomics and cellular imaging. Subpopulations of tumor cells exhibited signatures of proliferation, KRAS signaling, cell stress and epithelial-to-mesenchymal transition. Mapping mutations and copy number events distinguished tumor populations from normal and transitional cells, including acinar-to-ductal metaplasia and pancreatic intraepithelial neoplasia. Pathology-assisted deconvolution of spatial transcriptomic data identified tumor and transitional subpopulations with distinct histological features. We showed coordinated expression of TIGIT in exhausted and regulatory T cells and Nectin in tumor cells. Chemo-resistant samples contain a threefold enrichment of inflammatory cancer-associated fibroblasts that upregulate metallothioneins. Our study reveals a deeper understanding of the intricate substructure of pancreatic ductal adenocarcinoma tumors that could help improve therapy for patients with this disease.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Carcinoma Ductal Pancreático/metabolismo , Transformación Celular Neoplásica/genética , Humanos , Páncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Microambiente Tumoral/genética , Neoplasias Pancreáticas
14.
Nat Commun ; 13(1): 3296, 2022 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-35697686

RESUMEN

Chimeric antigen receptor (CAR) T cell therapy is routinely used to treat patients with refractory hematologic malignancies. However, a significant proportion of patients experience suboptimal CAR T cell cytotoxicity and persistence that can permit tumor cell escape and disease relapse. Here we show that a prototype pro-lymphoid growth factor is able to enhance CAR T cell efficacy. We demonstrate that a long-acting form of recombinant human interleukin-7 (IL-7) fused with hybrid Fc (rhIL-7-hyFc) promotes proliferation, persistence and cytotoxicity of human CAR T cells in xenogeneic mouse models, and murine CAR T cells in syngeneic mouse models, resulting in long-term tumor-free survival. Thus, rhIL-7-hyFc represents a tunable clinic-ready adjuvant for improving suboptimal CAR T cell activity.


Asunto(s)
Neoplasias , Receptores Quiméricos de Antígenos , Animales , Proliferación Celular , Humanos , Interleucina-7/farmacología , Ratones , Proteínas Recombinantes de Fusión , Linfocitos T
15.
Bioinform Adv ; 2(1): vbac028, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35603231

RESUMEN

Motivation: The use of single-cell methods is expanding at an ever-increasing rate. While there are established algorithms that address cell classification, they are limited in terms of cross platform compatibility, reliance on the availability of a reference dataset and classification interpretability. Here, we introduce Pollock, a suite of algorithms for cell type identification that is compatible with popular single-cell methods and analysis platforms, provides a set of pretrained human cancer reference models, and reports interpretability scores that identify the genes that drive cell type classifications. Results: Pollock performs comparably to existing classification methods, while offering easily deployable pretrained classification models across a wide variety of tissue and data types. Additionally, it demonstrates utility in immune pan-cancer analysis. Availability and implementation: Source code and documentation are available at https://github.com/ding-lab/pollock. Pretrained models and datasets are available for download at https://zenodo.org/record/5895221. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

16.
Leukemia ; 36(6): 1625-1634, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35422095

RESUMEN

Despite improvement in treatment options for myeloma patients, including targeted immunotherapies, multiple myeloma remains a mostly incurable malignancy. High CS1 (SLAMF7) expression on myeloma cells and limited expression on normal cells makes it a promising target for CAR-T therapy. The CS1 protein has two extracellular domains - the distal Variable (V) domain and the proximal Constant 2 (C2) domain. We generated and tested CS1-CAR-T targeting the V domain of CS1 (Luc90-CS1-CAR-T) and demonstrated anti-myeloma killing in vitro and in vivo using two mouse models. Since fratricide of CD8 + cells occurred during production, we generated fratricide resistant CS1 deficient Luc90- CS1- CAR-T (ΔCS1-Luc90- CS1- CAR-T). This led to protection of CD8 + cells in the CAR-T cultures, but had no impact on efficacy. Our data demonstrate targeting the distal V domain of CS1 could be an effective CAR-T treatment for myeloma patients and deletion of CS1 in clinical production did not provide an added benefit using in vivo immunodeficient NSG preclinical models.


Asunto(s)
Mieloma Múltiple , Receptores Quiméricos de Antígenos , Animales , Linfocitos T CD8-positivos/patología , Humanos , Inmunoterapia Adoptiva , Ratones , Mieloma Múltiple/patología , Receptores Quiméricos de Antígenos/metabolismo , Familia de Moléculas Señalizadoras de la Activación Linfocitaria/metabolismo , Linfocitos T/metabolismo , Carga Tumoral , Ensayos Antitumor por Modelo de Xenoinjerto
17.
NPJ Breast Cancer ; 8(1): 49, 2022 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-35418131

RESUMEN

Late-stage relapse (LSR) in patients with breast cancer (BC) occurs more than five years and up to 10 years after initial treatment and has less than 30% 5-year relative survival rate. Long non-coding RNAs (lncRNAs) play important roles in BC yet have not been studied in LSR BC. Here, we identify 1127 lncRNAs differentially expressed in LSR BC via transcriptome sequencing and analysis of 72 early-stage and 24 LSR BC patient tumors. Decreasing expression of the most up-regulated lncRNA, LINC00355, in BC and MCF7 long-term estrogen deprived cell lines decreases cellular invasion and proliferation. Subsequent mechanistic studies show that LINC00355 binds to MENIN and changes occupancy at the CDKN1B promoter to decrease p27Kip. In summary, this is a key study discovering lncRNAs in LSR BC and LINC00355 association with epigenetic regulation and proliferation in BC.

19.
Cancer Res Commun ; 2(10): 1255-1265, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36969740

RESUMEN

As part of the Multiple Myeloma Research Foundation (MMRF) immune atlas pilot project, we compared immune cells of multiple myeloma bone marrow samples from 18 patients assessed by single-cell RNA sequencing (scRNA-seq), mass cytometry (CyTOF), and cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) to understand the concordance of measurements among single-cell techniques. Cell type abundances are relatively consistent across the three approaches, while variations are observed in T cells, macrophages, and monocytes. Concordance and correlation analysis of cell type marker gene expression across different modalities highlighted the importance of choosing cell type marker genes best suited to particular modalities. By integrating data from these three assays, we found International Staging System stage 3 patients exhibited decreased CD4+ T/CD8+ T cells ratio. Moreover, we observed upregulation of RAC2 and PSMB9, in natural killer cells of fast progressors compared with those of nonprogressors, as revealed by both scRNA-seq and CITE-seq RNA measurement. This detailed examination of the immune microenvironment in multiple myeloma using multiple single-cell technologies revealed markers associated with multiple myeloma rapid progression which will be further characterized by the full-scale immune atlas project. Significance: scRNA-seq, CyTOF, and CITE-seq are increasingly used for evaluating cellular heterogeneity. Understanding their concordances is of great interest. To date, this study is the most comprehensive examination of the measurement of the immune microenvironment in multiple myeloma using the three techniques. Moreover, we identified markers predicted to be significantly associated with multiple myeloma rapid progression.


Asunto(s)
Mieloma Múltiple , Transcriptoma , Humanos , Transcriptoma/genética , Linfocitos T CD8-positivos , Mieloma Múltiple/genética , Proyectos Piloto , Análisis de Expresión Génica de una Sola Célula , Microambiente Tumoral/genética
20.
Nat Commun ; 12(1): 5086, 2021 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-34429404

RESUMEN

Development of candidate cancer treatments is a resource-intensive process, with the research community continuing to investigate options beyond static genomic characterization. Toward this goal, we have established the genomic landscapes of 536 patient-derived xenograft (PDX) models across 25 cancer types, together with mutation, copy number, fusion, transcriptomic profiles, and NCI-MATCH arms. Compared with human tumors, PDXs typically have higher purity and fit to investigate dynamic driver events and molecular properties via multiple time points from same case PDXs. Here, we report on dynamic genomic landscapes and pharmacogenomic associations, including associations between activating oncogenic events and drugs, correlations between whole-genome duplications and subclone events, and the potential PDX models for NCI-MATCH trials. Lastly, we provide a web portal having comprehensive pan-cancer PDX genomic profiles and source code to facilitate identification of more druggable events and further insights into PDXs' recapitulation of human tumors.


Asunto(s)
Xenoinjertos , Neoplasias/genética , Neoplasias/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica , Genoma , Genómica , Humanos , Masculino , Ratones , Modelos Biológicos , Mutación , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...