Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
3 Biotech ; 13(9): 313, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37636999

RESUMEN

A limited number of studies have directly examined the effects of liposomal encapsulated phytochemicals and their anti-obesity effects in adults. This study aimed to summarize the evidence on the effect of liposomal encapsulated phytochemicals and their role in regulating major pathways involved in the anti-obesity mechanism. A systematic search was performed using several search engines like Science Direct, Google Scholar, and other online journals, focusing on laboratory research, systematic reviews, clinical trials, and meta-analysis that focused on liposomal encapsulated phytochemicals with anti-obesity properties, and followed the preferred reporting terms for this systematic review. An initial search provided a result of 1810 articles, and 93 papers were selected after the inclusion and exclusion criteria. Very few studies have been conducted on the liposomal encapsulation of phytochemicals or its synergistic study to combat obesity; hence this review paves the way for future obesity research and is mainly helpful for the pediatric obesity population. Liposomal encapsulation of phytochemicals has improved the efficiency of freely administered phytochemicals. Targeted delivery improved drug utilization and regulated the anti-obesity pathways. PPARƔ is a major therapeutic target for obesity as it inhibits adipocyte differentiation and maintains energy homeostasis.

2.
J Mater Sci Mater Med ; 31(8): 75, 2020 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-32761252

RESUMEN

Our study investigates the effect of magnetosome mediated oral Insulin delivery on diabetic induced rat models. The study involves the development of Magnetosome-Insulin (MI) conjugates by direct and indirect (by means of PEG) coupling method and further characterized by microscopic and spectroscopic analysis. The in vivo oral delivery of magnetosome-Insulin conjugate against streptozotocin-induced rat models and its efficiency was investigated. The impact of MI showed a remarkable change in the reduction of FBG levels up to 65% than the standard (Insulin). Similarly, the serum parameters: triglycerides (43.81%), AST&ALT (39.4 and 57.2%), total cholesterol (43.8%) showed significant changes compared to the diabetic control. The histological results of MI treated rats were found similar to control rats. Thus, these significantly notable results on diabetic rats depicts that magnetosomes can be employed as a potential approach and a very promising alternative for the parenteral route of Insulin delivery.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Portadores de Fármacos/química , Insulina/administración & dosificación , Magnetosomas/química , Administración Oral , Animales , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Diabetes Mellitus/sangre , Diabetes Mellitus Experimental/sangre , Diabetes Mellitus Experimental/inducido químicamente , Diabetes Mellitus Experimental/tratamiento farmacológico , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Evaluación Preclínica de Medicamentos , Liberación de Fármacos , Insulina/farmacocinética , Magnetosomas/metabolismo , Magnetospirillum/metabolismo , Masculino , Ratas , Ratas Wistar , Estreptozocina
3.
Scientifica (Cairo) ; 2019: 1513982, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31871820

RESUMEN

[This corrects the article DOI: 10.1155/2015/867586.].

4.
Pharmacogn Mag ; 13(Suppl 3): S533-S538, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29142410

RESUMEN

BACKGROUND: Leaves of Costus pictus D. Don, (insulin plant) are used as dietary supplement for the treatment of diabetes. OBJECTIVE: The antidiabetic activity of this plant is well documented, but its activity on different cell types and mechanism remains unknown. Thus, the present study evaluates the cytotoxicity of C. pictus methanolic extract (CPME) against various cancer and normal cells. MATERIALS AND METHODS: Dried leaves of C. pictus were extracted using methanol and were subjected to histone deacetylase (HDAC) inhibition and toxicity studies. RESULTS: The CPME displayed a selective toxicity toward tested cancer cells in a dose- and time-dependent manner. CPME exhibited significant cytotoxicity on Liver hepatocellular carcinoma cells (Hep G2) (half maximal inhibitory concentration IC50 = 6.7 mg/ml). Since CPME demonstrates both antidiabetic, anticancer activity, and HDAC enzyme play a detrimental role in both the complications, we have evaluated the CPME-induced HDAC regulation on Hep G2 cell lines. CPME showed a notable HDAC inhibition (55%). Furthermore, CPME did not show any genotoxicity or membrane instability at the tested concentrations. CONCLUSION: CPME demonstrates selective cytotoxicity toward tumor cells at a lower concentration through HDAC inhibition. SUMMARY: C. pictus is used as munching supplementary food for the treatment of diabetesCPME selectively induces cytotoxicity in cancer cells leaving normal cells healthySelective toxicity to cancer cells are attributed by the inhibition of HDAC enzymeCPME did not show any genotoxicity and membrane instability in blood cellsCPME could be potential source of HDAC inhibitor. Abbreviations used: A549: Human lung carcinoma cells, CPME: Costus pictus methanolic extract, DMEM: Dulbecco's modified eagle's medium, DMSO: Dimethyl sulfoxide, ELISA: Enzyme-linked immunosorbent assay, 5-FU: 5-Fluorouracil, Hep G2: Liver hepatocellular carcinoma cells, HEK-293: Human embryonic kidney cells, Hela: Human cervical carcinoma cells, HT-29: Human colorectal adenocarcinoma cells, HDAC: Histone deacetylase, IC50: Half maximal inhibitory concentration, MCF-7: Human breast adenocarcinoma cells, MDA-MB-435S: Human breast cancer cells, MTT: 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide, NFF: Neonatal foreskin fibroblasts, PHA: Phytohemagglutinin, PBS: Phosphate buffer saline, RPMI-1640: Roswell Park Memorial Institute Medium.

5.
Pharmacognosy Res ; 9(3): 238-246, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28827964

RESUMEN

BACKGROUND: Asparagopsis taxiformis (Rhodophyta) is a species of red algae belonging to the family Bonnemaisoniaceae. The objective of the present study was to evaluate antioxidant and antiproliferative activity of four fractions (petroleum ether, chloroform, ethyl acetate, and methanol) of A. taxiformis. MATERIALS AND METHODS: The red seaweed, A. taxiformis was collected from Mandapam Coastal Region, Gulf of Mannar, Tamil Nadu. Epiphytes present in algal extracts were cleaned and washed with seawater and fresh water. In vitro antioxidant activity was determined by hydrogen peroxide scavenging, ferric reducing antioxidant power, superoxide radical, metal-chelating activity, and phosphomolybdenum reduction assay. Further, the cytotoxic activity was evaluated using brine shrimp lethality assay. This method is rapid, reliable, inexpensive, and convenient as compared to other cytotoxicity assays. Gallic acid, ethylenediaminetetraacetic acid, ascorbic acid, and quercetin were used as reference antioxidant compounds. RESULTS: Reducing power of chloroform extract increased with increasing concentration of the extract. The radical scavenging activity of extracts was in the following order: ascorbic acid > methanol > chloroform > petroleum ether > ethyl acetate. Highest metal-chelating activity was observed in petroleum ether fractions (63%). Reduction of Mo (VI) to Mo (V) increased in methanol extract (27%) at 100 µg/ml. Moreover, all fractions had an inhibitory effect on the formation of hydroxyl radicals. Results showed that ethyl acetate, methanol, and petroleum ether fractions exhibited potent cytotoxic activity with median lethal concentration values of 84.33, 104.4, and 104.4 µg/ml, respectively. CONCLUSION: Thus, the results showed that red algae possess strong antioxidant and cytotoxic activity that suggests their possible use in the development of pharmaceutical drugs. SUMMARY: Various fractions of red algae Asparagopsis taxiformis was evaluated for in vitro antioxidant and antiproliferative studies. All results indicate potential use of red algae for drug development. Abbreviations Used: Mo: Molybdenum, AlCl3.H2O: Aluminum chloride, NaNO2: Sodium nitrite, NaOH: Sodium hydroxide, H2O2: Hydrogen peroxide, NADH: Nicotinamide adenine dinucleotide, NBT: Nitroblue tetrazolium chloride, PMS: Phenyl methanesulfonate, FeCl2: Ferrous chloride.

6.
3 Biotech ; 7(2): 126, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-28573396

RESUMEN

Magnetosomes are nanosized iron oxide particles surrounded by lipid membrane synthesized by magnetotactic bacteria (MTB). Magnetosomes have been exploited for a broad range of biomedical and biotechnological applications. Due to their enormous potential in the biomedical field, its safety assessment is necessary. Detailed research on the toxicity of the magnetosomes was not studied so far. This study focuses on the toxicity assessment of magnetosomes in various models such as Human RBC's, WBC's, mouse macrophage cell line (J774), Onion root tip and fish (Oreochromis mossambicus). The toxicity in RBC models revealed that the RBC's are unaltered up to a concentration of 150 µg/ml, and its morphology was not affected. The genotoxicity studies on WBC's showed that there were no detectable chromosomal aberrations up to a concentration of 100 µg/ml. Similarly, there were no detectable morphological changes observed on the magnetosome-treated J774 cells, and the viability of the cells was above 90% at all the tested concentrations. Furthermore, the magnetosomes are not toxic to the fish (O. mossambicus), as no mortality or behavioural changes were observed in the magnetosome-treated groups. Histopathological analysis of the same reveals no damage in the muscle and gill sections. Overall, the results suggest that the magnetosomes are safe at lower concentration and does not pose any potential risk to the ecosystem.

7.
World J Microbiol Biotechnol ; 32(7): 109, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27263004

RESUMEN

Magnetotactic bacteria (MTB) are aquatic prokaryotes that orient themselves to earth's magnetic field with the help of intracellular organelle magnetosomes. Although many species of MTB have been identified, the isolation of MTB is a challenging task due to the lack of systematic isolation procedure and/or commercial media. In this study, we are reporting the isolation of magnetotactic spirillum from the Pulicat lagoon, India using a systematic and selective procedure. Sampling site was chosen on the basis of physicochemical properties of the ecosystem and the catalysed reporter deposition fluorescence in situ hybridization (CARD-FISH) analysis of sediment samples. In the current study, a combination of techniques including 'capillary racetrack' Purification and gradient cultivation resulted in the isolation of magnetotactic spirilla from aquatic sediments. Based on the 16S rRNA gene sequence analysis, the strain was identified as Magnetospirillum and was designated as Magnetospirillum sp. VITRJS1. The genes responsible for magnetosome formation (mamA, B, E, F, K, M, O, P, Q, T) were successfully detected using PCR amplification. The presence of cbbM gene confirmed that the isolate is chemolithoautotroph and utilises reduced sulphur as an electron source. Furthermore, magnetosomes extracted from VITRJS1 found to be cubo-octahedral in shape and 45 nm in size. Our results indicate that the systematic procedure using sediment analysis, CARD-FISH, and a combination of isolation methods enables the selective and rapid isolation of MTB from aquatic sediment sample.


Asunto(s)
Sedimentos Geológicos/microbiología , Magnetospirillum/clasificación , Magnetospirillum/aislamiento & purificación , Agua de Mar/microbiología , Composición de Base , Dióxido de Carbono/metabolismo , Crecimiento Quimioautotrófico/fisiología , Ecosistema , Genoma Bacteriano , Sedimentos Geológicos/análisis , Hibridación Fluorescente in Situ , India , Magnetosomas/química , Magnetosomas/genética , Magnetosomas/metabolismo , Magnetospirillum/genética , Magnetospirillum/metabolismo , Fotomicrografía , Filogenia , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , Agua de Mar/análisis
8.
Scientifica (Cairo) ; 2015: 867586, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26605106

RESUMEN

The polycyclic aromatic hydrocarbons (PAHs) pollution to the environment is a major threat to the living organisms, and hence the degradation of these PAHs is necessary. Studies on PAHs degrading bacteria have focussed on terrestrial microbes and the potential of marine derived microbes is undermined. Herein we report the isolation and characterization of PAHs degrading Burkholderia sp. from lagoon sediments collected at the Southern coast of India. The strain was Gram negative, rod-shaped, motile, and ∼2-5 µm in length. Based on the phylogenetic data the strain was identified as Burkholderia and designated as VITRSB1. Initial PAHs degradation ability of the strain was assessed using basal salt medium supplemented with diesel, kerosene, toluene, aniline, naphthalene, and phenol. The strain was found to be effectively degrading kerosene, diesel, toluene, and aniline even at higher concentration (1%). However, naphthalene and aniline were degraded only at lower concentration (0.1%) and phenol, camphor, and DAP inhibited the growth of the strain. Furthermore, the degraded end products of the PAHs were determined using FTIR. Notably, none of the end products were found to be toxic to the biosphere. Our results indicate that the isolated Burkholderia sp. could be a prospective candidate for the effective degradation of selective PAHs.

9.
Lett Appl Microbiol ; 61(1): 69-76, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25880615

RESUMEN

UNLABELLED: In the light of important detrimental role of aberrant histone deacetylases (HDAC) production during various clinical complications, development of therapeutically effective and specific inhibitors of HDAC is critically important. This study deals with the screening for HDAC inhibitors from marine Actinomycetes. The isolation of Actinomycetes from 22 sediment samples along the Southern Coast of India yielded 186 strains including Streptomyces, Nocardipsis, evaluated for HDAC inhibition using HeLa cells. Among the 186 isolates, 10 strains have shown moderate to strong inhibition. The maximum inhibition (61%) was seen with strain VITKSM06 and least inhibition (31%) was seen with strain VITSJT03. The MTT cell proliferation assay using HeLa cell line showed significant cytotoxicity with an IC50 of 5·9 µg ml(-1) by VITKSM06-derived metabolite and 26·2 µg ml(-1) by VITSJT03. The compound treated HeLa cells displayed an altered morphology and condensed chromatin which may be due to HDAC inhibition. Based on the phylogenetic analysis, the potential strains were identified as Nocardiopsis sp VITKSM06, Streptomyces sp VITAKS1 and Streptomyces sp VITRSM02. This study reveals the importance of screening marine Actinomycetes for the discovery of potential novel HDAC inhibitors of therapeutic importance. SIGNIFICANCE AND IMPACT OF THE STUDY: Histone deacetylases (HDAC) are epigenetic enzymes that regulate the deacetylation in lysine group on a histone, and thus regulate the gene expression. The HDAC inhibitors are reported to promote apoptosis on tumour cells, thus become clinically important drug target. Several studies have addressed the identification of putative HDAC inhibitors as therapeutic agents for cancer and until now those cleared phase III human trials are very limited. This study attempts to investigate the chemical diversity found in marine Actinomycetes towards negative HDAC modulation, which could be used individually or in combination as anti-cancerous and other therapeutic measure.


Asunto(s)
Actinomyces/enzimología , Antineoplásicos/aislamiento & purificación , Epigénesis Genética/efectos de los fármacos , Inhibidores de Histona Desacetilasas/aislamiento & purificación , Histona Desacetilasas/metabolismo , Actinomyces/química , Actinomyces/clasificación , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células HeLa , Inhibidores de Histona Desacetilasas/farmacología , Humanos , India , Datos de Secuencia Molecular , Filogenia
10.
Pharmacogn Mag ; 11(Suppl 4): S511-5, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27013787

RESUMEN

AIM: In the continuing search for safe and efficient antidiabetic drug, marine algae become important source which provide several compounds of immense therapeutic potential. Alpha-amylase, alpha-glucosidase inhibitors, and antioxidant compounds are known to manage diabetes and have received much attention recently. In the present study, four green algae (Chaetomorpha aerea, Enteromorpha intestinalis, Chlorodesmis, and Cladophora rupestris) were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro. MATERIALS AND METHODS: The phytochemical constituents of all the extracts were qualitatively determined. Antidiabetic activity was evaluated by inhibitory potential of extracts against alpha-amylase and alpha-glucosidase by spectrophotometric assays. Antioxidant activity was determined by 2,2-diphenyl-1-picrylhydrazyl, hydrogen peroxide (H2O2), and nitric oxide scavenging assay. Gas chromatography-mass spectrometry (GC-MS) analysis was carried out to determine the major compound responsible for its antidiabetic action. RESULTS: Among the various extracts screened, chloroform extract of C. aerea (IC50 - 408.9 µg/ml) and methanol extract of Chlorodesmis (IC50 - 147.6 µg/ml) showed effective inhibition against alpha-amylase. The extracts were also evaluated for alpha-glucosidase inhibition, and no observed activity was found. Methanol extract of C. rupestris showed notable free radical scavenging activity (IC50 - 666.3 µg/ml), followed by H2O2 (34%) and nitric oxide (49%). Further, chemical profiling by GC-MS revealed the presence of major bioactive compounds. Phenol, 2,4-bis (1,1-dimethylethyl) and z, z-6,28-heptatriactontadien-2-one were predominantly found in the methanol extract of C. rupestris and chloroform extract of C. aerea. CONCLUSION: Our results demonstrate that the selected algae exhibit notable alpha-amylase inhibition and antioxidant activity. Therefore, characterization of active compounds and its in vivo assays will be noteworthy. SUMMARY: Four green algae were chosen to evaluate alpha-amylase, alpha-glucosidase inhibitory, and antioxidant activity in vitro C. aerea and Chlorodesmis showed significant inhibition against alpha-amylase, and C. rupestris showed notable free radical scavenging activityNo observed activity was found against alpha-glucosidaseGC-MS analysis of the active extracts reveals the presence of major compounds which gives an insight on the antidiabetic and antioxidant activity of these algae. Abbreviations used: DPPH: 2,2-diphenyl-1-picrylhydrazyl, BHT: Butylated hydroxytoluene, GC-MS: Gas chromatography-mass spectrometry.

11.
Biomed Res Int ; 2014: 783895, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25050371

RESUMEN

One of the therapeutic approaches in treating diabetes is to reduce postprandial hyperglycemia by inhibiting major carbohydrate hydrolyzing enzymes. In the present study, crude extracts of marine seaweed, Turbinaria ornata, were tested for their antidiabetic potential using enzyme inhibitory assays (α-amylase, α-glucosidase, and dipeptidyl peptidase-IV). Among the tested extracts, methanol and acetone extracts showed significant inhibitory effects on α-amylase (IC50 250.9 µg/mL), α-glucosidase (535.6 µg/mL), and dipeptidyl peptidase-4 (55.2 µg/mL), respectively. Free radical scavenging activity of these extracts was analyzed using DPPH assay (65%). Extracts were tested for in vitro toxicity using DNA fragmentation assay, haemolytic assay, and MTT assay. None of the extracts showed toxicity in tested models. Furthermore, GC-MS analysis of lead extracts showed the presence of major compounds, hentriacontane, z, z-6, 28-heptatriactontadien-2-one, 8-heptadecene, and 1-heptacosanol. Our findings suggest that Turbinaria ornata can be used as a potential source for further in vivo studies in controlling hyperglycemia.


Asunto(s)
Diabetes Mellitus/enzimología , Redes y Vías Metabólicas/efectos de los fármacos , Extractos Vegetales/farmacología , Algas Marinas/química , Animales , Compuestos de Bifenilo/química , Muerte Celular/efectos de los fármacos , Línea Celular , Supervivencia Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Dipeptidil Peptidasa 4/metabolismo , Inhibidores Enzimáticos/farmacología , Depuradores de Radicales Libres/farmacología , Cromatografía de Gases y Espectrometría de Masas , Hemólisis/efectos de los fármacos , Humanos , Ratones , Oligopéptidos/farmacología , Fitoterapia , Picratos/química , alfa-Amilasas/antagonistas & inhibidores , alfa-Amilasas/metabolismo , alfa-Glucosidasas/metabolismo
12.
Pak J Biol Sci ; 17(5): 715-9, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-26031006

RESUMEN

Araucaria cookii is an ornamental plant, which are evergreen conifer found in India and in many other European countries. Similarly Brassaia actinophylla is also an ornamental plant with its native from Java, Australia and in U.S. Though these plants are used for various purposes, the medicinal properties of the plants were not investigated. In our study, the two ornamental plants were chosen for screening both antioxidant and antimicrobial activity. The Leaves of the plants were used for preparing crude extract and was prepared by Soxhlet extraction method. For the extraction of the leave extracts, different solvents viz., methanol, chloroform and petroleum ether were used based on our preliminary data. The obtained extracts were condensed and stored. For the antioxidant and antimicrobial activity, the extractions were prepared into various concentrations. For the antioxidant activity DPPH was used as scavenger of the free radicals which showed the inhibition of percentage for Araucaria cookii was 63% and the inhibition percentage for Brassaia actinophylla 41%. For the antimicrobial activity the extracts were checked against two bacterial and two fungal pathogens. The phytochemical analysis assists in the study of the antioxidant and antimicrobial activity as to the probable compounds responsible for the activity. The result thus obtained provides a report of Brassaia actinophylla as a possible source of antioxidants and also the use of both extracts as a probable antimicrobial agent.


Asunto(s)
Antiinfecciosos/farmacología , Antioxidantes/farmacología , Araliaceae/química , Extractos Vegetales/farmacología , Tracheophyta/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA