Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 119(9): 2551-2563, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35610631

RESUMEN

The deformation and detachment of bacterial biofilm are related to the structural and mechanical properties of the biofilm itself. Extracellular polymeric substances (EPS) play an important role on keeping the mechanical stability of biofilms. The understanding of biofilm mechanics and detachment can help to reveal biofilm survival mechanisms under fluid shear and provide insight about what flows might be needed to remove biofilm in a cleaning cycle or for a ship to remove biofilms. However, how the EPS may affect biofilm mechanics and its deformation in flow conditions remains elusive. To address this, a coupled computational fluid dynamic- discrete element method (CFD-DEM) model was developed. The mechanisms of biofilm detachment, such as erosion and sloughing have been revealed by imposing hydrodynamic fluid flow at different velocities and loading rates. The model, which also allows adjustment of the proportion of different functional groups of microorganisms in the biofilm, enables the study of the contribution of EPS toward biofilm resistance to fluid shear stress. Furthermore, the stress-strain curves during biofilm deformation have been captured by loading and unloading fluid shear stress to study the viscoelastic properties of the biofilm. Our predicted emergent viscoelastic properties of biofilms were consistent with relevant experimental measurements.


Asunto(s)
Biopelículas , Matriz Extracelular de Sustancias Poliméricas , Bacterias , Simulación por Computador , Hidrodinámica
2.
Biotechnol Bioeng ; 118(2): 918-929, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33146404

RESUMEN

Biofilm streamer motion under different flow conditions is important for a wide range of industries. The existing work has largely focused on experimental characterisations of these streamers, which is often time-consuming and expensive. To better understand the physics of biofilm streamer oscillation and their interactions in fluid flow, a computational fluid dynamics-discrete element method model has been developed. The model was used to study the flow-induced oscillations and cohesive failure of single and multiple biofilm streamers. We have studied the effect of streamer length on the oscillation at varied flow rates. The predicted single biofilm streamer oscillations in various flow rates agreed well with experimental measurements. We have also investigated the effect of the spatial arrangement of streamers on interactions between two oscillating streamers in parallel and tandem arrangements. Furthermore, cohesive failure of streamers was studied in an accelerating fluid flow, which is important for slowing down biofilm-induced clogging.


Asunto(s)
Biopelículas , Hidrodinámica , Modelos Químicos , Estrés Mecánico
3.
Front Microbiol ; 8: 1865, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29021783

RESUMEN

The production of extracellular polymeric substance (EPS) is important for the survival of biofilms. However, EPS production is costly for bacteria and the bacterial strains that produce EPS (EPS+) grow in the same environment as non-producers (EPS-) leading to competition between these strains for nutrients and space. The outcome of this competition is likely to be dependent on factors such as initial attachment, EPS production rate, ambient nutrient levels and quorum sensing. We use an Individual-based Model (IbM) to study the competition between EPS+ and EPS- strains by varying the nature of initial colonizers which can either be in the form of single cells or multicellular aggregates. The microbes with EPS+ characteristics obtain a competitive advantage if they initially colonize the surface as smaller aggregates and are widely spread-out between the cells of EPS-, when both are deposited on the substratum. Furthermore, the results show that quorum sensing-regulated EPS production may significantly reduce the fitness of EPS producers when they initially deposit as aggregates. The results provide insights into how the distribution of bacterial aggregates during initial colonization could be a deciding factor in the competition among different strains in biofilms.

4.
J Acoust Soc Am ; 131(2): 1055-65, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22352481

RESUMEN

The complex variables method with mapping function was extended to solve the linear acoustic wave scattering by an inclusion with sharp/smooth corners in an infinite ideal fluid domain. The improved solutions of Helmholtz equation, shown as Bessel function with mapping function as the argument and fractional order Bessel function, were analytically obtained. Based on the mapping function, the initial geometry as well as the original physical vector can be transformed into the corresponding expressions inside the mapping plane. As all the physical vectors are calculated in the mapping plane (η,η), this method can lead to potential vast savings of computational resources and memory. In this work, the results are validated against several published works in the literature. The different geometries of the inclusion with sharp corners based on the proposed mapping functions for irregular polygons are studied and discussed. The findings show that the variation of angles and frequencies of the incident waves have significant influence on the bistatic scattering pattern and the far-field form factor for the pressure in the fluid.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...