Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Am Geriatr Soc ; 2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38400764

RESUMEN

BACKGROUND: Substitute decision-makers (SDMs) make decisions that honor medical, personal, and end-of-life wishes for older adults who have lost capacity, including those with dementia. However, SDMs often lack support, information, and problem-solving tools required to make decisions and can suffer with negative emotional, relationship, and financial impacts. The need for adaptable supports has been identified in prior meta-analyses. This scoping review identifies evidence-based decision-making resources/tools for SDMs, outlines domains of support, and determines resource/tool effectiveness and/or efficacy. METHODS: The scoping review used the search strategy: Population-SDMs for older adults who have lost decision-making capacity; Concept-supports, resources, tools, and interventions; Context-any context where a decision is made on behalf of an adult (>25 years). Databases included MEDLINE, Embase, CINAHL, PsycINFO, and Abstracts in Social Gerontology and SocIndex. Tools were scored by members on the research team, including patient partners, based on domains of need previously identified in prior meta-analyses. RESULTS: Two reviewers independently screened 5279 citations. Articles included studies that evaluated a resource/tool that helped a family/friend/caregiver SDMs outside of an ICU setting. 828 articles proceeded onto full-text screening, and 25 articles were included for data extraction. The seventeen tools identified focused on different time points/decisions in the dementia trajectory, and no single tool encompassed all the domains of caregiver decision-making needs. CONCLUSION: Existing tools may not comprehensively support caregiver needs. However, combining tools into a toolkit and considering their application relevant to the caregiver's journey may start to address the gap in current supports.

2.
Microbiome ; 9(1): 186, 2021 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-34517928

RESUMEN

BACKGROUND: Studies on the inhibition of inflammation by infection with helminth parasites have, until recently, overlooked a key determinant of health: the gut microbiota. Infection with helminths evokes changes in the composition of their host's microbiota: one outcome of which is an altered metabolome (e.g., levels of short-chain fatty acids (SCFAs)) in the gut lumen. The functional implications of helminth-evoked changes in the enteric microbiome (composition and metabolites) are poorly understood and are explored with respect to controlling enteric inflammation. METHODS: Antibiotic-treated wild-type, germ-free (GF) and free fatty-acid receptor-2 (ffar2) deficient mice were infected with the tapeworm Hymenolepis diminuta, then challenged with DNBS-colitis and disease severity and gut expression of the il-10 receptor-α and SCFA receptors/transporters assessed 3 days later. Gut bacteria composition was assessed by 16 s rRNA sequencing and SCFAs were measured. Other studies assessed the ability of feces or a bacteria-free fecal filtrate from H. diminuta-infected mice to inhibit colitis. RESULTS: Protection against disease by infection with H. diminuta was abrogated by antibiotic treatment and was not observed in GF-mice. Bacterial community profiling revealed an increase in variants belonging to the families Lachnospiraceae and Clostridium cluster XIVa in mice 8 days post-infection with H. diminuta, and the transfer of feces from these mice suppressed DNBS-colitis in GF-mice. Mice treated with a bacteria-free filtrate of feces from H. diminuta-infected mice were protected from DNBS-colitis. Metabolomic analysis revealed increased acetate and butyrate (both or which can reduce colitis) in feces from H. diminuta-infected mice, but not from antibiotic-treated H. diminuta-infected mice. H. diminuta-induced protection against DNBS-colitis was not observed in ffar2-/- mice. Immunologically, anti-il-10 antibodies inhibited the anti-colitic effect of H. diminuta-infection. Analyses of epithelial cell lines, colonoids, and colon segments uncovered reciprocity between butyrate and il-10 in the induction of the il-10-receptor and butyrate transporters. CONCLUSION: Having defined a feed-forward signaling loop between il-10 and butyrate following infection with H. diminuta, this study identifies the gut microbiome as a critical component of the anti-colitic effect of this helminth therapy. We suggest that any intention-to-treat with helminth therapy should be based on the characterization of the patient's immunological and microbiological response to the helminth.


Asunto(s)
Colitis , Helmintos , Himenolepiasis , Animales , Bacterias/genética , Colitis/tratamiento farmacológico , Ratones , Ratones Endogámicos BALB C
3.
Cell Mol Gastroenterol Hepatol ; 11(2): 551-571, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32992049

RESUMEN

BACKGROUND & AIMS: Adherent-invasive Escherichia coli are implicated in inflammatory bowel disease, and mitochondrial dysfunction has been observed in biopsy specimens from patients with inflammatory bowel disease. As a novel aspect of adherent-invasive E coli-epithelial interaction, we hypothesized that E coli (strain LF82) would elicit substantial disruption of epithelial mitochondrial form and function. METHODS: Monolayers of human colon-derived epithelial cell lines were exposed to E coli-LF82 or commensal E coli and RNA sequence analysis, mitochondrial function (adenosine triphosphate synthesis) and dynamics (mitochondrial network imaging, immunoblotting for fission and fusion proteins), and epithelial permeability (transepithelial resistance, flux of fluorescein isothiocyanate-dextran and bacteria) were assessed. RESULTS: E coli-LF82 significantly affected epithelial expression of ∼8600 genes, many relating to mitochondrial function. E coli-LF82-infected epithelia showed swollen mitochondria, reduced mitochondrial membrane potential and adenosine triphosphate, and fragmentation of the mitochondrial network: events not observed with dead E coli-LF82, medium from bacterial cultures, or control E coli. Treatment with Mitochondrial Division Inhibitor 1 (Mdivi1, inhibits dynamin-related peptide 1, guanosine triphosphatase principally responsible for mitochondrial fission) or P110 (prevents dynamin-related peptide 1 binding to mitochondrial fission 1 protein) partially reduced E coli-LF82-induced mitochondrial fragmentation in the short term. E coli-LF82-infected epithelia showed loss of the long isoform of optic atrophy factor 1, which mediates mitochondrial fusion. Mitochondrial Division Inhibitor 1 reduced the magnitude of E coli-LF82-induced increased transepithelial flux of fluorescein isothiocyanate dextran. By 8 hours after infection, increased cytosolic cytochrome C and DNA fragmentation were apparent without evidence of caspase-3 or apoptosis inducing factor activation. CONCLUSIONS: Epithelial mitochondrial fragmentation caused by E coli-LF82 could be targeted to maintain cellular homeostasis and mitigate infection-induced loss of epithelial barrier function. Data have been deposited in NCBI's Gene Expression Omnibus and are accessible through GEO series accession numbers GSE154121 and GSE154122 (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE154121).


Asunto(s)
Colon/patología , Enfermedad de Crohn/microbiología , Escherichia coli/patogenicidad , Mucosa Intestinal/patología , Mitocondrias/patología , Adhesión Bacteriana/genética , Línea Celular Tumoral , Colon/citología , Enfermedad de Crohn/patología , Dinaminas/genética , Dinaminas/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Interacciones Huésped-Patógeno/genética , Humanos , Mucosa Intestinal/citología , Dinámicas Mitocondriales/genética , Permeabilidad
4.
Sci Adv ; 6(23): eaba4376, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32548267

RESUMEN

Murine alternatively activated macrophages can exert anti-inflammatory effects. We sought to determine if IL-4-treated human macrophages [i.e., hM(IL4)] would promote epithelial wound repair and can serve as a cell transfer treatment for inflammatory bowel disease (IBD). Blood monocytes from healthy volunteers and patients with active and inactive IBD were converted to hM(IL4)s. IL-4 treatment of blood-derived macrophages from healthy volunteers and patients with inactive IBD resulted in a characteristic CD206+CCL18+CD14low/- phenotype (RNA-seq revealed IL-4 affected expression of 996 genes). Conditioned media from freshly generated or cryopreserved hM(IL4)s promoted epithelial wound healing in part by TGF, and reduced cytokine-driven loss of epithelial barrier function in vitro. Systemic delivery of hM(IL4) to dinitrobenzene sulphonic acid (DNBS)-treated Rag1-/- mice significantly reduced disease. These findings from in vitro and in vivo analyses provide proof-of-concept support for the development of autologous M(IL4) transfer as a cellular immunotherapy for IBD.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Colitis/metabolismo , Colitis/terapia , Modelos Animales de Enfermedad , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/terapia , Interleucina-4/metabolismo , Interleucina-4/farmacología , Macrófagos/metabolismo , Ratones , Cicatrización de Heridas
5.
Cell Mol Gastroenterol Hepatol ; 10(2): 287-307, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32298841

RESUMEN

BACKGROUND & AIMS: Mitochondria exist in a constantly remodelling network, and excessive fragmentation can be pathophysiological. Mitochondrial dysfunction can accompany enteric inflammation, but any contribution of altered mitochondrial dynamics (ie, fission/fusion) to gut inflammation is unknown. We hypothesized that perturbed mitochondrial dynamics would contribute to colitis. METHODS: Quantitative polymerase chain reaction for markers of mitochondrial fission and fusion was applied to tissue from dextran sodium sulfate (DSS)-treated mice. An inhibitor of mitochondrial fission, P110 (prevents dynamin related protein [Drp]-1 binding to mitochondrial fission 1 protein [Fis1]) was tested in the DSS and di-nitrobenzene sulfonic acid (DNBS) models of murine colitis, and the impact of DSS ± P110 on intestinal epithelial and macrophage mitochondria was assessed in vitro. RESULTS: Analysis of colonic tissue from mice with DSS-colitis revealed increased mRNA for molecules associated with mitochondrial fission (ie, Drp1, Fis1) and fusion (optic atrophy factor 1) and increased phospho-Drp1 compared with control. Systemic delivery of P110 in prophylactic or treatment regimens reduced the severity of DSS- or DNBS-colitis and the subsequent hyperalgesia in DNBS-mice. Application of DSS to epithelial cells or macrophages caused mitochondrial fragmentation. DSS-evoked perturbation of epithelial cell energetics and mitochondrial fragmentation, but not cell death, were ameliorated by in vitro co-treatment with P110. CONCLUSIONS: We speculate that the anti-colitic effect of systemic delivery of the anti-fission drug, P110, works at least partially by maintaining enterocyte and macrophage mitochondrial networks. Perturbed mitochondrial dynamics can be a feature of intestinal inflammation, the suppression of which is a potential novel therapeutic direction in inflammatory bowel disease.


Asunto(s)
Colitis Ulcerosa/inmunología , Colon/patología , GTP Fosfohidrolasas/farmacología , Mucosa Intestinal/patología , Dinámicas Mitocondriales/inmunología , Fragmentos de Péptidos/farmacología , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Colitis Ulcerosa/patología , Colon/citología , Colon/efectos de los fármacos , Colon/inmunología , Sulfato de Dextran/administración & dosificación , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , GTP Fosfohidrolasas/uso terapéutico , Humanos , Mucosa Intestinal/citología , Mucosa Intestinal/efectos de los fármacos , Mucosa Intestinal/inmunología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/inmunología , Mitocondrias/metabolismo , Dinámicas Mitocondriales/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/inmunología , Fragmentos de Péptidos/uso terapéutico
6.
Gut Microbes ; 11(3): 497-510, 2020 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-31928118

RESUMEN

The tapeworm Hymenolepis diminuta fails to establish in mice. Given the potential for helminth-bacteria interaction in the gut and the influence that commensal bacteria exert on host immunity, we tested if worm expulsion was related to alterations in the gut microbiota. Specific pathogen-free (SPF) mice, treated with broad-spectrum antibiotics, or germ-free wild-type mice were infected with H. diminuta, gut bacterial composition assessed by 16S rRNA gene sequencing, and worm counts, blood eosinophilia, goblet cells, splenic IL-4, -5 and -10, and colonic cytokines/chemokines mRNA were assessed. Effects of a PBS-soluble extract of adult H. diminuta on bacterial growth in vitro was tested. H. diminuta-infected mice displayed increased α and ß diversity in colonic mucosa-associated and fecal bacterial communities, characterized by increased Lachnospiraceae and clostridium cluster XIVa. In vitro analysis revealed that the worm extract promoted the growth of anaerobic bacteria on M2GSC agar. H. diminuta-infection was accompanied by increased Th2 immune responses, and colon from infected mice had increased levels of IL-10, IL-25, Muc2, trefoil factor 3, and ß2-defensin mRNA. SPF-mice treated with antibiotics, or germ-free mice, expelled H. diminuta with kinetics similar to control SPF mice. In both settings, measurements of Th2-immune responses were not significantly different across the groups. Thus, while infection with H. diminuta results in subtle but distinct changes to the colonic microbiota, we have no evidence to support an essential role for gut bacteria in the expulsion of the worm from the mouse host.


Asunto(s)
Colon/microbiología , Microbioma Gastrointestinal , Himenolepiasis/inmunología , Himenolepiasis/microbiología , Himenolepiasis/parasitología , Animales , Antibacterianos/farmacología , Biodiversidad , Citocinas/inmunología , ADN Bacteriano/genética , Heces/microbiología , Interacciones Huésped-Parásitos , Hymenolepis diminuta , Mucosa Intestinal/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , ARN Ribosómico 16S/genética , Organismos Libres de Patógenos Específicos
7.
FASEB J ; 33(4): 5676-5689, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30668930

RESUMEN

Macrophages play central roles in immunity as early effectors and modulating adaptive immune reponses; we implicated macrophages in the anticolitic effect of infection with the tapeworm Hymenolepis diminuta. Here, gene arrays revealed that H. diminuta antigen (HdAg) evoked a program in murine macrophages distinct from that elicited by IL-4. Further, HdAg suppressed LPS-evoked release of TNF-α and IL-1ß from macrophages via autocrine IL-10 signaling. In assessing the ability of macrophages treated in vitro with an extract of H. diminuta [M(HdAg)] to affect disease, intravenous, but not peritoneal, injection of M(HdAg) protected wild-type but not RAG1-/- mice from dinitrobenzene sulphonic acid (DNBS)-induced colitis. Administration of splenic CD4+ T cells from in vitro cocultures with M(HdAg), but not those cocultured with M(IL-4) cells, inhibited DNBS-induced colitis; fractionation of the T-cell population indicated that the CD4+CD25+ T cells from cocultures with M(HdAg) drove the suppression of DNBS-induced colitis. Use of IL-4-/- or IL-10-/- CD4+ T cells revealed that neither cytokine alone from the donor cells was essential for the anticolitic effect. These data illustrate that HdAg evokes a unique regulatory program in macrophages, identifies HdAg-evoked IL-10 suppression of macrophage activation, and reveals the ability of HdAg-treated macrophages to educate ( i.e., condition) and mobilize CD4+CD25+ T cells, which could be deployed to treat colonic inflammation.-Reyes, J. L., Lopes, F., Leung, G., Jayme, T. S., Matisz, C. E., Shute, A., Burkhard, R., Carneiro, M., Workentine, M. L., Wang, A., Petri, B., Beck, P. L., Geuking, M. B., McKay, D. M., Macrophages treated with antigen from the tapeworm Hymenolepis diminuta condition CD25+ T cells to suppress colitis.


Asunto(s)
Antígenos Helmínticos/inmunología , Linfocitos T CD4-Positivos/inmunología , Cestodos/inmunología , Colitis/inmunología , Hymenolepis diminuta/inmunología , Subunidad alfa del Receptor de Interleucina-2/inmunología , Macrófagos/inmunología , Animales , Colitis/parasitología , Colon/inmunología , Colon/parasitología , Citocinas/inmunología , Humanos , Interleucina-10/inmunología , Interleucina-4/inmunología , Activación de Macrófagos/inmunología , Macrófagos/parasitología , Masculino , Ratones , Ratones Endogámicos BALB C
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...