Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Environ Sci Pollut Res Int ; 31(20): 29374-29384, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38573580

RESUMEN

Lead (Pb) is commonly found in urban soils and can transfer to vegetables. This entails a health risk for consumers of garden crops. The increasing demand of gardening on urban soil linked to the population increase and concentration in urban areas induces an increase in the risk, as people could be forced to cultivate contaminated soils. The aim of this study was to evaluate the performance of a cropping system that allows simultaneously (i) growing eatable vegetables that accumulate few Pb and (ii) cleaning up the soil with other plants by phytoextraction. The tests were carried out in an allotment garden (Nantes, France) where soils are moderately enriched by Pb from geogenic origin (178 mg.kg-1 of dry soil on average). Four vegetables known to accumulate slightly Pb (Solanum lycopersicum, Brassica oleracea cv. "Capitata," Solanum tuberosum, and Phaseolus vulgaris) were grown. The in situ ability of Brassica juncea L. to progressively absorb the phytoavailable Pb of the soil was assessed during four seasons. Analyses of the edible parts of the four vegetables confirmed that they can all be safely cultivated. The accumulation of Pb in B. juncea shoots was too low (ca. 1 mg.kg-1 of dry matter at best) for phytoextraction purposes. Our results confirm that it is possible to grow very low Pb-accumulating vegetables on soils moderately contaminated with Pb, although it was not possible to reduce phytoavailable Pb rapidly enough with B. juncea. This study identifies possible avenues of research to improve this cropping system by using appropriate vegetables that will allow food production to continue on moderately contaminated soil while cleaning it up.


Asunto(s)
Plomo , Contaminantes del Suelo , Suelo , Verduras , Plomo/metabolismo , Francia , Suelo/química , Jardines , Biodegradación Ambiental
2.
Agron Sustain Dev ; 43(1): 18, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36748098

RESUMEN

There is a lack of data on resources used and food produced at urban farms. This hampers attempts to quantify the environmental impacts of urban agriculture or craft policies for sustainable food production in cities. To address this gap, we used a citizen science approach to collect data from 72 urban agriculture sites, representing three types of spaces (urban farms, collective gardens, individual gardens), in five countries (France, Germany, Poland, United Kingdom, and United States). We answered three key questions about urban agriculture with this unprecedented dataset: (1) What are its land, water, nutrient, and energy demands? (2) How productive is it relative to conventional agriculture and across types of farms? and (3) What are its contributions to local biodiversity? We found that participant farms used dozens of inputs, most of which were organic (e.g., manure for fertilizers). Farms required on average 71.6 L of irrigation water, 5.5 L of compost, and 0.53 m2 of land per kilogram of harvested food. Irrigation was lower in individual gardens and higher in sites using drip irrigation. While extremely variable, yields at well-managed urban farms can exceed those of conventional counterparts. Although farm type did not predict yield, our cluster analysis demonstrated that individually managed leisure gardens had lower yields than other farms and gardens. Farms in our sample contributed significantly to local biodiversity, with an average of 20 different crops per farm not including ornamental plants. Aside from clarifying important trends in resource use at urban farms using a robust and open dataset, this study also raises numerous questions about how crop selection and growing practices influence the environmental impacts of growing food in cities. We conclude with a research agenda to tackle these and other pressing questions on resource use at urban farms. Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-022-00859-4.

3.
Environ Monit Assess ; 194(9): 649, 2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35931840

RESUMEN

Home and community composting are key strategies for local organic waste management. The quality and safety of industrial composts are controlled, but those of home and community composts are not, and this could make them unsafe for use in kitchen gardens. Home (n = 20) and community (n = 41) composts, from urban and suburban areas including mildly Pb-contaminated allotment gardens, were analyzed for quality and safety regarding trace metals and metalloids (TMM) using mid-infrared Fourier transform spectrometry (FT-MIR) and portable X-ray fluorescence spectrometry, respectively. Home composts had a significantly higher Pb content (98 mg.kg-1 ± 10 mg.kg-1) than community composts (21 mg.kg-1 ± 2 mg.kg-1). Numerous home composts (85%) and a few community composts (17%) exceeded the organic farming thresholds for Pb (45 mg.kg-1) and Zn (100 mg.kg-1). The high mineral matter content and the relative abundance of chemical functions attributable to silicates (up to 35%) highly paralleled with TMM contents, mostly concentrated in the fine fraction. Co-inertia analysis highlighted strong and significant links between TMM contents and the whole chemical signature delivered by FT-MIR spectrometry. Pb-contaminated soil could be carried into home compost by green waste or by voluntary addition. Covariance analyses indicated that mineral matter and chemical functions only partly explained the variability in Pb content, suggesting a more complex combination of drivers. Community composting appears as a suitable local solution resulting in high-quality compost that complies with European organic farming regulations, while home composting from allotment gardens should be seriously evaluated to comply with such safety requirements.


Asunto(s)
Compostaje , Metaloides , Metales Pesados , Oligoelementos , Monitoreo del Ambiente , Plomo/análisis , Metaloides/análisis , Metales Pesados/análisis , Suelo , Oligoelementos/análisis
4.
Artículo en Inglés | MEDLINE | ID: mdl-33638069

RESUMEN

Platinum group elements (PGEs, i.e. platinum, Pt; palladium, Pd; and rhodium, Rh) catalyse over 90% of carbon monoxide, nitrogen oxides and hydrocarbons from combustion residues into water vapour, carbon dioxide and nitrogen in the vehicle's catalytic converter. But there is a major concern over these metals in the scientific world, since they are emitted by catalytic converters and accumulating in the environment. The distribution of PGEs in PM10 fraction was studied in an open urban site (Nantes, France) and in a tunnel (Paris, France) using low- and high-volume air samplers. PGEs were also investigated in dry deposition particles and deposited dust sampled in the tunnel. Pd occurred at the highest levels in both PM10 and dry deposition samples, followed by Rh and Pt. Maximum concentrations in PM10 fraction were 114 pg m-3 for Pd, 14.3 pg m-3 for Rh and 3.3 pg m-3 for Pt in the urban site (Nantes) and 91 pg m-3 for Pd and 16 pg m-3 for Rh in the tunnel (Paris). The concentrations for dry depositions in the tunnel were 261 µg kg-1 for Pt, 431 µg kg-1 for Pd and 85 µg kg-1 for Rh. The results on PGEs levels in atmospheric particles and dry depositions are the first data of their kind in France and will provide new insights into the contribution of catalytic converters to the environment. We also observed Pd and Rh being 2 times higher PM10 particles compared to dry depositions, leading us to suggest that particles rich in Pd and Rh are smaller than 10 µm. An overall concentration trend of Pd > Rh > Pt was observed in all samples, showing the replacement of Pt by Pd and Rh in newer catalytic converters.

5.
Environ Pollut ; 257: 113477, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31761587

RESUMEN

Platinum-Group Elements (PGEs, i.e. platinum; Pt, palladium; Pd and rhodium; Rh) are extensively employed in the production of automotive catalytic converters to catalyze and control harmful emissions from exhaust fumes. But catalytic converters wear out over time and the emission of PGEs along with the exhaust fumes are nowadays known to be the main reason of the presence of PGEs in urban environments. PGEs contents were studied on three gasoline 3-way catalytic convertors with low, medium and high kilometers. PGEs emission factors via exhaust gases from Euro 3, 4, 5 and 6 gasoline and diesel vehicles, were monitored using catalytic converters. Results show variable content for PGEs for the three converters, in the ranges of 6-511, 0.5-2507 and 0.1-312 mg kg-1 for Pt, Pd and Rh respectively. PGEs contents in different catalyst supports show the replacement of Pt by Pd in more recent converters. Analysis of the exhaust gas shows that catalytic converters expel up to 36.5 ±â€¯3.8 ng km-1 of Pt, 8.9 ±â€¯1.1 ng km-1 of Pd and 14.1 ±â€¯1.5 ng km-1 of Rh. Higher emissions of PGEs have been observed by gasoline Euro 3 vehicle, possibly due to the older technology of motorization and of the catalytic converter in this vehicle. Euro 3 and 4 diesel vehicles seem to emit more PGEs during urban cycles. Emission of PGEs has been also observed during the cold start of the majority of vehicles which seems to be the result of incomplete combustion during the rise of temperature in the engine. Higher PGEs emissions were also observed during motorway cycles in newer (Euro 4 and 5) petrol and diesel vehicles, conceivably due to the greater combustion as the engine speeds up during this cycle.


Asunto(s)
Automóviles , Platino (Metal)/análisis , Emisiones de Vehículos/análisis , Catálisis , Monitoreo del Ambiente , Gases/análisis , Gasolina/análisis , Paladio/análisis , Rodio/análisis
6.
Environ Pollut ; 164: 175-81, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22361057

RESUMEN

This study investigates the column leaching of a soil contaminated mainly with Cr and Ni by using two chelants: citric acid (biodegradable) and EDTA (non-biodegradable) followed with water rinse. The chelants lead to Cr and Ni leaching, in addition to major elements (Ca, Fe, Mg, Al, Mn and Zn) showing the dissolution of soil mineral constituents. EDTA leaches more major elements and Ni than citric acid related to the respective stability of metal-chelant complexes; citric acid leaches more Cr than EDTA, certainly because of a substitution reaction with Cr(VI). In the case of alternating chelant/water applications, leaching occurs during the chelant applications, but also during water applications. In the case of chelant/water applications followed by continuous water application, both Cr and Ni leach over time. This increased mobility could be due to the residual chelant present in soil as well as to the dissolution/mobilization of mineral or organic soil fractions.


Asunto(s)
Cromo/química , Ácido Cítrico/química , Ácido Edético/química , Restauración y Remediación Ambiental/métodos , Níquel/química , Contaminantes del Suelo/química , Cromo/análisis , Níquel/análisis , Suelo/química , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA