Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PeerJ ; 9: e12408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35036113

RESUMEN

BACKGROUND: Antibiotic resistance genes (ARGs) are considered to be emerging environmental contaminants of concern potentially posing risks to human and animal health, and this research studied the prevalence of antimicrobial resistance in dairy manure. METHODS: This study is focused on investigating prevalence of ARGs in California dairy farm manure under current common different manure management. A total of 33 manure samples were collected from multiple manure treatment conditions: (1) flushed manure (FM), (2) fresh pile (FP), (3) compost pile (CP), (4) primary lagoon (PL), and (5) secondary lagoon (SL). After DNA extraction, all fecal samples were screened by PCR for the presence of eight ARGs: four sulfonamide ARGs (sulI, sulII, sulIII, sulA), two tetracycline ARGs (tetW, tetO), two macrolide-lincosamide-streptogramin B (MLSB) ARGs (ermB, ermF). Samples were also screened for two mobile genetic elements (MGEs) (intI1, tnpA), which are responsible for dissemination of ARGs. Quantitative PCR was then used to screen all samples for five ARGs (sulII, tetW, ermF, tnpA and intI1). RESULTS: Prevalence of genes varied among sample types, but all genes were detectable in different manure types. Results showed that liquid-solid separation, piling, and lagoon conditions had limited effects on reducing ARGs and MGEs, and the effect was only found significant on tetW (p = 0.01). Besides, network analysis indicated that sulII was associated with tnpA (p < 0.05), and Psychrobacter and Pseudomonas as opportunistic human pathogens, were potential ARG/MGE hosts (p < 0.05). This research indicated current different manure management practices in California dairy farms has limited effects on reducing ARGs and MGEs. Improvement of different manure management in dairy farms is thus important to mitigate dissemination of ARGs into the environment.

2.
PLoS One ; 15(9): e0239677, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32986754

RESUMEN

A geographically isolated maize landrace cultivated on nitrogen-depleted fields without synthetic fertilizer in the Sierra Mixe region of Oaxaca, Mexico utilizes nitrogen derived from the atmosphere and develops an extensive network of mucilage-secreting aerial roots that harbors a diazotrophic (N2-fixing) microbiota. Targeting these diazotrophs, we selected nearly 600 microbes of a collection obtained from mucilage and confirmed their ability to incorporate heavy nitrogen (15N2) metabolites in vitro. Sequencing their genomes and conducting comparative bioinformatic analyses showed that these genomes had substantial phylogenetic diversity. We examined each diazotroph genome for the presence of nif genes essential to nitrogen fixation (nifHDKENB) and carbohydrate utilization genes relevant to the mucilage polysaccharide digestion. These analyses identified diazotrophs that possessed the canonical nif gene operons, as well as many other operon configurations with concomitant fixation and release of >700 different 15N labeled metabolites. We further demonstrated that many diazotrophs possessed alternative nif gene operons and confirmed their genomic potential to derive chemical energy from mucilage polysaccharide to fuel nitrogen fixation. These results confirm that some diazotrophic bacteria associated with Sierra Mixe maize were capable of incorporating atmospheric nitrogen into their small molecule extracellular metabolites through multiple nif gene configurations while others were able to fix nitrogen without the canonical (nifHDKENB) genes.


Asunto(s)
Microbiota/genética , Fijación del Nitrógeno , Mucílago de Planta/metabolismo , Raíces de Plantas/microbiología , Zea mays/microbiología , Bacterias/genética , Bacterias/metabolismo , Genoma Bacteriano , México , Nitrógeno/metabolismo , Operón , Filogenia , Raíces de Plantas/metabolismo , Secuenciación Completa del Genoma
3.
PLoS One ; 15(9): e0239081, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32925972

RESUMEN

Sierra Mixe maize is a geographically remote landrace variety grown on nitrogen-deficient fields in Oaxaca, Mexico that meets its nutritional requirements without synthetic fertilizer by associating with free-living diazotrophs comprising the microbiota of its aerial root mucilage. We selected nearly 500 diazotrophic (N2-fixing) bacteria isolated from Sierra Mixe maize mucilage and sequenced their genomes. Comparative genomic analysis demonstrated that isolates represented diverse genera and composed three major diazotrophic groups based on nitrogen fixation gene content. In addition to nitrogen fixation, we examined deamination of 1-amino-1-cyclopropanecarboxylic acid, biosynthesis of indole-3-acetic acid, and phosphate solubilization as alternative mechanisms of direct plant growth promotion (PGP). Genome mining showed that isolates of all diazotrophic groups possessed marker genes for multiple mechanisms of direct plant growth promotion (PGP). Implementing in vitro assays corroborated isolate genotypes by measuring each isolate's potential to confer the targeted PGP traits and revealed phenotypic variation among isolates based on diazotrophic group assignment. Investigating the ability of mucilage diazotrophs to confer PGP by direct inoculation of clonally propagated potato plants in planta led to the identification of 16 bio-stimulant candidates. Conducting nitrogen-stress greenhouse experiments demonstrated that potato inoculation with a synthetic community of bio-stimulant candidates, as well as with its individual components, resulted in PGP phenotypes. We further demonstrated that one diazotrophic isolate conferred PGP to a conventional maize variety under nitrogen-stress in the greenhouse. These results indicate that, while many diazotrophic isolates from Sierra Mixe maize possessed genotypes and in vitro phenotypes for targeted PGP traits, a subset of these organisms promoted the growth of potato and conventional maize, potentially through the use of multiple promotion mechanisms.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Productos Agrícolas/microbiología , Fijación del Nitrógeno , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Bacterias/genética , Bacterias/aislamiento & purificación , Fenómenos Fisiológicos Bacterianos , Ácidos Indolacéticos/metabolismo , Fosfatos/metabolismo , Solanum tuberosum/crecimiento & desarrollo , Solanum tuberosum/microbiología
4.
PLoS Biol ; 16(8): e2006352, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30086128

RESUMEN

Plants are associated with a complex microbiota that contributes to nutrient acquisition, plant growth, and plant defense. Nitrogen-fixing microbial associations are efficient and well characterized in legumes but are limited in cereals, including maize. We studied an indigenous landrace of maize grown in nitrogen-depleted soils in the Sierra Mixe region of Oaxaca, Mexico. This landrace is characterized by the extensive development of aerial roots that secrete a carbohydrate-rich mucilage. Analysis of the mucilage microbiota indicated that it was enriched in taxa for which many known species are diazotrophic, was enriched for homologs of genes encoding nitrogenase subunits, and harbored active nitrogenase activity as assessed by acetylene reduction and 15N2 incorporation assays. Field experiments in Sierra Mixe using 15N natural abundance or 15N-enrichment assessments over 5 years indicated that atmospheric nitrogen fixation contributed 29%-82% of the nitrogen nutrition of Sierra Mixe maize.


Asunto(s)
Microbiota/genética , Fijación del Nitrógeno/fisiología , Nitrógeno/metabolismo , Zea mays/metabolismo , México , Microbiota/fisiología , Filogenia , Desarrollo de la Planta , Mucílago de Planta/metabolismo , Raíces de Plantas/metabolismo , Polisacáridos/metabolismo , Suelo , Microbiología del Suelo
5.
PLoS One ; 13(1): e0190126, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29304047

RESUMEN

Dairy farms generate a considerable amount of manure, which is applied in cropland as fertilizer. While the use of manure as fertilizer reduces the application of chemical fertilizers, the main concern with regards to manure application is microbial pollution. Manure is a reservoir of a broad range of microbial populations, including pathogens, which have potential to cause contamination and pose risks to public and animal health. Despite the widespread use of manure fertilizer, the change in microbial diversity of manure under various treatment processes is still not well-understood. We hypothesize that the microbial population of animal waste changes with manure handling used in a farm environment. Consequential microbial risk caused by animal manure may depend on manure handling. In this study, a reconnaissance effort for sampling dairy manure in California Central Valley followed by 16S rRNA analysis of content and diversity was undertaken to understand the microbiome of manure after various handling processes. The microbial community analysis of manure revealed that the population in liquid manure differs from that in solid manure. For instance, the bacteria of genus Sulfuriomonas were unique in liquid samples, while the bacteria of genus Thermos were observed only in solid samples. Bacteria of genus Clostridium were present in both solid and liquid samples. The population among liquid samples was comparable, as was the population among solid samples. These findings suggest that the mode of manure application (i.e., liquid versus solid) could have a potential impact on the microbiome of cropland receiving manure as fertilizers.


Asunto(s)
Industria Lechera , Estiércol/microbiología , Microbiota , ARN Ribosómico 16S/genética , Algoritmos , Animales , Bovinos
6.
Sci Rep ; 6: 29525, 2016 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-27389966

RESUMEN

Complex glycans cover the gut epithelial surface to protect the cell from the environment. Invasive pathogens must breach the glycan layer before initiating infection. While glycan degradation is crucial for infection, this process is inadequately understood. Salmonella contains 47 glycosyl hydrolases (GHs) that may degrade the glycan. We hypothesized that keystone genes from the entire GH complement of Salmonella are required to degrade glycans to change infection. This study determined that GHs recognize the terminal monosaccharides (N-acetylneuraminic acid (Neu5Ac), galactose, mannose, and fucose) and significantly (p < 0.05) alter infection. During infection, Salmonella used its two GHs sialidase nanH and amylase malS for internalization by targeting different glycan structures. The host glycans were altered during Salmonella association via the induction of N-glycan biosynthesis pathways leading to modification of host glycans by increasing fucosylation and mannose content, while decreasing sialylation. Gene expression analysis indicated that the host cell responded by regulating more than 50 genes resulting in remodeled glycans in response to Salmonella treatment. This study established the glycan structures on colonic epithelial cells, determined that Salmonella required two keystone GHs for internalization, and left remodeled host glycans as a result of infection. These data indicate that microbial GHs are undiscovered virulence factors.


Asunto(s)
Glicocálix/química , Glicósido Hidrolasas/genética , Mucosa Intestinal/microbiología , Polisacáridos/química , Salmonella typhi/patogenicidad , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células CACO-2 , Línea Celular , Eliminación de Gen , Regulación de la Expresión Génica , Glicósido Hidrolasas/metabolismo , Interacciones Huésped-Patógeno , Humanos , Técnicas In Vitro , Mucosa Intestinal/química , Polisacáridos/metabolismo , Proteolisis , Salmonella typhi/enzimología , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
7.
AMB Express ; 6(1): 15, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26897534

RESUMEN

To identify innovative ways for better utilizing flushed dairy manure wastewater, we have assessed the effect of dairy manure and supplementation with synthetic medium on the growth of Chlorella vulgaris. A series of experiments were carried out to study the impacts of pretreatment of dairy wastewater and the benefits of supplementing dairy manure wastewater with synthetic medium on C. vulgaris growth increment and the ultrastructure (chloroplast, starch, lipid, and cell wall) of C. vulgaris cells. Results showed that the biomass production of C. vulgaris in dairy wastewater can be enhanced by pretreatment and using supplementation with synthetic media. A recipe combining pretreated dairy wastewater (40 %) and synthetic medium (60 %) exhibited an improved growth of C. vulgaris. The effects of dairy wastewater on the ultrastructure of C. vulgaris cells were distinct compared to that of cells grown in synthetic medium. The C. vulgaris growth in both synthetic medium and manure wastewater without supplementing synthetic medium was lower than the growth in dairy manure supplemented with synthetic medium. We anticipate that the results of this study will help in deriving an enhanced method of coupling nutrient-rich dairy manure wastewater for biofuel production.

8.
Plant Physiol ; 167(2): 381-93, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25535279

RESUMEN

Cellulose synthase complexes (CSCs) at the plasma membrane (PM) are aligned with cortical microtubules (MTs) and direct the biosynthesis of cellulose. The mechanism of the interaction between CSCs and MTs, and the cellular determinants that control the delivery of CSCs at the PM, are not yet well understood. We identified a unique small molecule, CESA TRAFFICKING INHIBITOR (CESTRIN), which reduces cellulose content and alters the anisotropic growth of Arabidopsis (Arabidopsis thaliana) hypocotyls. We monitored the distribution and mobility of fluorescently labeled cellulose synthases (CESAs) in live Arabidopsis cells under chemical exposure to characterize their subcellular effects. CESTRIN reduces the velocity of PM CSCs and causes their accumulation in the cell cortex. The CSC-associated proteins KORRIGAN1 (KOR1) and POM2/CELLULOSE SYNTHASE INTERACTIVE PROTEIN1 (CSI1) were differentially affected by CESTRIN treatment, indicating different forms of association with the PM CSCs. KOR1 accumulated in bodies similar to CESA; however, POM2/CSI1 dissociated into the cytoplasm. In addition, MT stability was altered without direct inhibition of MT polymerization, suggesting a feedback mechanism caused by cellulose interference. The selectivity of CESTRIN was assessed using a variety of subcellular markers for which no morphological effect was observed. The association of CESAs with vesicles decorated by the trans-Golgi network-localized protein SYNTAXIN OF PLANTS61 (SYP61) was increased under CESTRIN treatment, implicating SYP61 compartments in CESA trafficking. The properties of CESTRIN compared with known CESA inhibitors afford unique avenues to study and understand the mechanism under which PM-associated CSCs are maintained and interact with MTs and to dissect their trafficking routes in etiolated hypocotyls.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas Portadoras/metabolismo , Celulasa/metabolismo , Celulosa/metabolismo , Inhibidores Enzimáticos/farmacología , Glucosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Anisotropía , Arabidopsis/citología , Arabidopsis/enzimología , Arabidopsis/crecimiento & desarrollo , Benzamidas/farmacología , Compartimento Celular/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Dinitrobencenos/farmacología , Glucosa/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Hipocótilo/efectos de los fármacos , Hipocótilo/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Transporte de Proteínas/efectos de los fármacos , Sulfanilamidas/farmacología
9.
Trends Microbiol ; 22(5): 292-300, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24725482

RESUMEN

Epigenetics has an important role for the success of foodborne pathogen persistence in diverse host niches. Substantial challenges exist in determining DNA methylation to situation-specific phenotypic traits. DNA modification, mediated by restriction-modification systems, functions as an immune response against antagonistic external DNA, and bacteriophage-acquired methyltransferases (MTase) and orphan MTases - those lacking the cognate restriction endonuclease - facilitate evolution of new phenotypes via gene expression modulation via DNA and RNA modifications, including methylation and phosphorothioation. Recent establishment of large-scale genome sequencing projects will result in a significant increase in genome availability that will lead to new demands for data analysis including new predictive bioinformatics approaches that can be verified with traditional scientific rigor. Sequencing technologies that detect modification coupled with mass spectrometry to discover new adducts is a powerful tactic to study bacterial epigenetics, which is poised to make novel and far-reaching discoveries that link biological significance and the bacterial epigenome.


Asunto(s)
Bacterias/química , Bacterias/genética , Epigenómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Espectrometría de Masas/métodos , Biología Computacional/métodos
10.
Phytopathology ; 103(1): 74-80, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23035632

RESUMEN

Lipid profiles in wheat leaves and the effects of tan spot on the profiles were quantified by mass spectrometry. Inoculation with Pyrenophora tritici-repentis significantly reduced the amount of leaf lipids, including the major plastidic lipids monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG), which together accounted for 89% of the mass spectral signal of detected lipids in wheat leaves. Levels of these lipids in susceptible cultivars dropped much more quickly during infection than those in resistant cultivars. Furthermore, cultivars resistant or susceptible to tan spot displayed different lipid profiles; leaves of resistant cultivars had more MGDG and DGDG than susceptible ones, even in noninoculated plants. Lipid compositional data from leaves of 20 noninoculated winter wheat cultivars were regressed against an index of disease susceptibility and fitted with a linear model. This analysis demonstrated a significant relationship between resistance and levels of plastidic galactolipids and indicated that cultivars with high resistance to tan spot uniformly had more MGDG and DGDG than cultivars with high susceptibility. These findings suggest that lipid composition of wheat leaves may be a determining factor in the resistance response of cultivars to tan spot.


Asunto(s)
Ascomicetos/fisiología , Galactolípidos/metabolismo , Lípidos/análisis , Enfermedades de las Plantas/microbiología , Triticum/metabolismo , Susceptibilidad a Enfermedades , Galactolípidos/análisis , Genotipo , Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Hojas de la Planta/química , Hojas de la Planta/microbiología , Triticum/química , Triticum/microbiología
11.
Mamm Genome ; 22(11-12): 661-73, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21858719

RESUMEN

Lens opacity 13 (lop13) is a spontaneous, autosomal recessive mouse mutant that exhibits nuclear cataracts. Histological analysis revealed swollen lens fiber cells and the presence of bladder cells within the lens cortex, as well as morgagnian globules and liquefied material at the lens posterior. At 3 months of age, in addition to cataracts, lop13 mice also develop persistent skin wounds. Linkage analysis assigned the lop13 locus to a 1.1-Mb region on mouse Chr 15, encompassing 19 candidate genes. Sequence analysis identified a C3112T mutation in exon 18 of Sterol Regulatory Element Binding-Transcription Factor 2 (Srebf2) resulting in the R1038C substitution of a highly conserved arginine within the Srebf2 regulatory domain. Srebf2 belongs to a family of membrane-bound basic helix-loop-helix leucine zipper transcription factors that control the expression of genes involved in the biosynthesis and uptake of cholesterol and fatty acids. The lack of complementation observed in Srebf2 ( lop13/GT ) compound heterozygotes carrying the Srebf2 gene trapped allele (Srebf2 ( GT )) provides genetic evidence that the identified C3112T substitution in Srebf2 is responsible for the lop13 phenotype. Gas chromatography analysis identified lower levels of cholesterol in the lop13 brain, liver, and lens when compared to wild-type mice. These findings suggest that lop13 is a hypomorphic mutation in Srebf2. As such, the lop13 mouse presents an invaluable in vivo model for studying the contribution of Srebf2 and cholesterol to maintaining the homeostasis of the lens and skin.


Asunto(s)
Catarata/genética , Catarata/patología , Piel/patología , Proteína 2 de Unión a Elementos Reguladores de Esteroles/genética , Animales , Secuencia de Bases , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/genética , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Catarata/metabolismo , Colesterol/metabolismo , Femenino , Genotipo , Cristalino/metabolismo , Cristalino/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Mutación , Análisis de Secuencia de ADN
12.
Mol Plant Microbe Interact ; 23(7): 861-70, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20521949

RESUMEN

Fusarium graminearum is the principal causative agent of Fusarium head blight (FHB), a devastating disease of wheat and barley. This fungus can also colonize Arabidopsis thaliana. Disease resistance was enhanced in transgenic wheat and Arabidopsis plants that constitutively overexpress the NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1) gene, which regulates salicylic acid (SA) signaling and modulates the activation of jasmonic acid (JA)-dependent defenses. Here, we provide several lines of evidence that reveal an important role for SA and JA signaling in Arabidopsis defense against F. graminearum. SA level was elevated in fungus-inoculated leaves, and SA application and biologically activated systemic acquired resistance enhanced resistance. Furthermore, the disruption of SA accumulation and signaling in the sid2 mutant and NahG transgenic plant, and the npr1 and wrky18 mutants, respectively, resulted in heightened susceptibility to this fungus in leaves and inflorescence. JA signaling was activated in parallel with SA signaling in the fungus-challenged plants. However, the hyperresistance of the JA pathway mutants opr3, coi1, and jar1 indicates that this pathway contributes to susceptibility. Genetic and biochemical experiments indicate that the JA pathway promotes disease by attenuating the activation of SA signaling in fungus-inoculated plants. However, the hypersusceptibility of the jar1 npr1 double mutant compared with the npr1 mutant suggests that JAR1 also contributes to defense, signifying a dichotomous role of JA and a JAR1-dependent mechanism in this interaction.


Asunto(s)
Arabidopsis/metabolismo , Arabidopsis/microbiología , Ciclopentanos/metabolismo , Fusarium/fisiología , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Genotipo , Interacciones Huésped-Patógeno , Hojas de la Planta/metabolismo , Hojas de la Planta/microbiología , Transducción de Señal
13.
Cancer Prev Res (Phila) ; 3(4): 466-77, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-20233900

RESUMEN

Exercise has been linked to a reduced cancer risk in animal models. However, the underlying mechanisms are unclear. This study assessed the effect of exercise with dietary consideration on the phospholipid profile in 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced mouse skin tissues. CD-1 mice were randomly assigned to one of the three groups: ad libitum-fed sedentary control; ad libitum-fed treadmill exercise at 13.4 m/min for 60 min/d, 5 d/wk (Ex+AL); and treadmill-exercised but pair-fed with the same amount as the control (Ex+PF). After 14 weeks, Ex+PF but not Ex+AL mice showed approximately 25% decrease in both body weight and body fat when compared with the controls. Of the total 338 phospholipids determined by electrospray ionization-tandem mass spectrometry, 57 were significantly changed, and 25 species could distinguish effects of exercise and diet treatments in a stepwise discriminant analysis. A 36% to 75% decrease of phosphatidylinositol (PI) levels in Ex+PF mice occurred along with a significant reduction of PI 3-kinase in TPA-induced skin epidermis, as measured by both Western blotting and immunohistochemistry. In addition, approximately 2-fold increase of the long-chain polyunsaturated fatty acids, docosahexaenoic and docosapentaenoic acids, in phosphatidylcholines, phosphatidylethanolamines, and lysophosphatidylethanolamines was observed in the Ex+PF group. Microarray analysis indicated that the expression of fatty acid elongase-1 increased. Taken together, these data indicate that exercise with controlled dietary intake, but not exercise alone, significantly reduced body weight and body fat as well as modified the phospholipid profile, which may contribute to cancer prevention by reducing TPA-induced PI 3-kinase and by enhancing omega-3 fatty acid elongation.


Asunto(s)
Ingestión de Alimentos/fisiología , Fosfolípidos/metabolismo , Condicionamiento Físico Animal , Neoplasias Cutáneas/metabolismo , Pérdida de Peso/fisiología , Acetiltransferasas/biosíntesis , Acetiltransferasas/metabolismo , Animales , Western Blotting , Peso Corporal , Dieta , Elongasas de Ácidos Grasos , Femenino , Expresión Génica/fisiología , Inmunohistoquímica , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Fosfatidilinositol 3-Quinasas/análisis , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfolípidos/análisis , Piel/química , Neoplasias Cutáneas/prevención & control
14.
FEMS Microbiol Ecol ; 71(1): 34-42, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19780827

RESUMEN

Members of the Fusarium genus are important components of many plant-soil systems worldwide and are responsible for many crop diseases. Knowledge of the relative influence of biotic and abiotic factors on this genus is therefore of broad economic and ecological importance. In order to address this issue, we examined Fusarium communities in soils nearby apparently healthy and symptomatic asparagus plants in 50 fields scattered in four agricultural regions of Québec, Canada. Fusarium community structure and abundance were assessed using genus-specific PCR-denaturing gradient gel electrophoresis and CFU counts, respectively. Multivariate statistical analyses were used to detect community patterns related to spatial, abiotic and biotic factors. Results suggested that Fusarium community structure (i.e. the presence and absence of the different Fusarium sequence variants in the samples) in soil is mainly related to biotic factors (arbuscular mycorrhizal fungi and bacterial community structure), whereas Fusarium abundance is more closely related to abiotic factors (mainly clay, organic matter, NH(4), Na and Cu). Some degree of influence of spatial patterns was also observed on both Fusarium community structure and abundance with, for instance, a large regional variation in Fusarium community structure. However, Fusarium community structure was not directly related to the disease status of nearby asparagus plants.


Asunto(s)
Fusarium/fisiología , Microbiología del Suelo , Suelo/análisis , Asparagus/microbiología , Recuento de Colonia Microbiana , ADN Bacteriano/aislamiento & purificación , Fusarium/genética , Fusarium/crecimiento & desarrollo , Raíces de Plantas/microbiología , Dinámica Poblacional , Quebec
15.
Talanta ; 77(1): 195-9, 2008 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-18804620

RESUMEN

The extraction and transesterification of soil lipids into fatty acid methyl esters (FAMEs) is a useful technique for studying soil microbial communities. The objective of this study was to find the best solvent mixture to extract soil lipids with a pressurized solvent extractor system. Four solvent mixtures were selected for testing: chloroform:methanol:phosphate buffer (1:2:0.8, v/v/v), chloroform:methanol (1:2, v/v), hexane:2-propanol (3:2, v/v) and acetone. Soils were from agricultural fields and had a wide range of clay, organic matter and microbial biomass contents. Total lipid fatty acid methyl esters (TL-FAMEs) were the extractable soil lipids identified and quantified with gas chromatography and flame ionization detection. Concentrations of TL-FAMEs ranged from 57.3 to 542.2 nmole g(-1) soil (dry weight basis). The highest concentrations of TL-FAMEs were extracted with chloroform:methanol:buffer or chloroform:methanol mixtures than with the hexane:2-propanol or acetone solvents. The concentrations of TL-FAMEs in chemical groups, including saturated, branched, mono- and poly-unsaturated and hydroxy fatty acids were assessed, and biological groups (soil bacteria, mycorrhizal fungi, saprophytic fungi and higher plants) was distinguished. The extraction efficiency for the chemical and biological groups followed the general trend of: chloroform:methanol:buffer> or =chloroform:methanol>hexane:2-propanol=acetone. Discriminant analysis revealed differences in TL-FAME profiles based on the solvent mixture and the soil type. Although solvent mixtures containing chloroform and methanol were the most efficient for extracting lipids from the agricultural soils in this study, soil properties and the lipid groups to be studied should be considered when selecting a solvent mixture. According to our knowledge, this is the first report of soil lipid extraction with hexane:2-propanol or acetone in a pressurized solvent extraction system.


Asunto(s)
Ácidos Grasos/análisis , Ácidos Grasos/química , Microbiología del Suelo , Suelo/análisis , Solventes/química , Biomarcadores/análisis , Biomasa , Esterificación , Metilación , Presión
16.
Mol Plant Microbe Interact ; 21(1): 70-8, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18052884

RESUMEN

Carbon and nitrogen (C/N) metabolism and allocation within the plant have important implications for plant-parasite interactions. Many plant parasites manipulate the host by inducing C/N changes that benefit their own survival and growth. Plant resistance can prevent this parasite manipulation. We used the wheat-Hessian fly (Mayetiola destructor) system to analyze C/N changes in plants during compatible and incompatible interactions. The Hessian fly is an insect but shares many features with plant pathogens, being sessile during feeding stages and having avirulence (Avr) genes that match plant resistance genes in gene-for-gene relationships. Many wheat genes involved in C/N metabolism were differentially regulated in plants during compatible and incompatible interactions. In plants during compatible interactions, the content of free carbon-containing compounds decreased 36%, whereas the content of free nitrogen-containing compounds increased 46%. This C/N shift was likely achieved through a coordinated regulation of genes in a number of central metabolic pathways, including glycolysis, the tricarboxylic acid cycle, and amino-acid synthesis. Our data on plants during compatible interactions support recent findings that Hessian fly larvae create nutritive cells at feeding (attack) sites and manipulate host plants to enhance their own survival and growth. In plants during incompatible interactions, most of the metabolic genes examined were not affected or down-regulated.


Asunto(s)
Carbono/metabolismo , Dípteros/fisiología , Nitrógeno/metabolismo , Triticum/metabolismo , Triticum/parasitología , Aminoácidos/biosíntesis , Animales , Ciclo del Ácido Cítrico , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Glucólisis , Vía de Pentosa Fosfato , Análisis de Componente Principal , ARN Mensajero/genética , ARN Mensajero/metabolismo , Triticum/enzimología , Triticum/genética
17.
Genet Eng (N Y) ; 28: 129-57, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17153937

RESUMEN

In the past dozen years, many new strategies for mass-spectrometry-based analyses of lipids have been developed. Lipidomics has emerged as a comprehensive approach to analysis of lipids from biological systems, and the most-utilized lipidomics methodologies involve electrospray ionization (ESI) sources and triple quadrupole analyzers. While mass spectral techniques for lipid profiling have advanced, challenges in developing uniform data acquisition methods and in handling, storing, and analyzing mass spectral data remain. Investigation of other ionization methods, including matrix-assisted laser desorption/ionization (MALDI) and atmospheric pressure chemical ionization (APCI), has demonstrated that these are useful in specific applications. APCI is particularly amenable to analysis of less polar lipids, and MALDI provides a rapid technology with application for tissue imaging. Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is particularly suited for imaging of tissues and cells.


Asunto(s)
Lípidos/química , Espectrometría de Masas/métodos , Presión Atmosférica , Cromatografía Liquida , Biología Computacional , Bases de Datos Factuales , Ionización de Llama/métodos , Ingeniería Genética , Espectrometría de Masa por Ionización de Electrospray/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Espectrometría de Masa de Ion Secundario/métodos
18.
Phytochemistry ; 67(17): 1907-24, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16843506

RESUMEN

Lipid profiling is a targeted metabolomics platform that provides a comprehensive analysis of lipid species with high sensitivity. Profiling based on electrospray ionization tandem mass spectrometry (ESI-MS/MS) provides quantitative data and is adaptable to high throughput analyses. Here we report the profiling of 140 apparent molecular species of polar glycerolipids in Arabidopsis leaves, flower stalks, flowers, siliques, roots, and seeds. Considerable differences in lipid species occur among these organs, providing insights into the different lipid metabolic activities in a specific organ. In addition, comparative profiling between wild-type and a knockout mutant pldalpha1 (locus ID: AT3G15730) provides insight into the metabolic function of phospholipase D (PLD) in different organs. PLDalpha1 contributes significantly to phosphatidic acid (PA) levels in roots, seeds, flowers, and flower stalks, but little to basal PA levels in siliques and leaves. In seeds of the pldalpha1 mutant plants, levels of PA, lysophosphatidylcholine, and lysophosphatidylethanolamine were significantly lower than those of wild-type seeds, suggesting a role for PLDalpha1 in membrane lipid degradation in seeds.


Asunto(s)
Arabidopsis/metabolismo , Lípidos/análisis , Mutación/genética , Fosfolipasa D/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Lípidos/química , Estructura Molecular , Ácidos Fosfatidicos/análisis , Ácidos Fosfatidicos/química , Fosfolipasa D/genética , Fosfolípidos/análisis , Fosfolípidos/química , Plantas Modificadas Genéticamente , Análisis de Componente Principal , Espectrometría de Masa por Ionización de Electrospray
19.
Phytopathology ; 95(8): 867-73, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18944407

RESUMEN

ABSTRACT The Fusarium spp. causing Fusarium crown and root rot (FCRR) are ubiquitous and abundant in soils, but in contrast, disease expression is localized and sporadic. Previous studies have related FCRR infection to phenolic acids released by asparagus, to the repression of Mn-reducers in soil, and to various soil physicochemical conditions. Fifty commercial asparagus plantations were surveyed using an exploratory approach in order to pinpoint the ecological conditions associated with FCRR development. Twenty-eight variables were used to describe the soil environments of the asparagus crops as well as the influence of crop management practices used locally. The data set was analyzed both as a whole and parsed by main cultivars (Jersey Giant and Guelph Millenium). Both field conditions and percentage of field area affected by FCRR varied widely between asparagus plantations. Planting depth was positively correlated with percentage of field area affected by FCRR and, hence, deep planting may favor FCRR infection. Plantation age was positively correlated with percentage of field area affected by FCRR, while soil available Mn was inversely correlated. Most importantly, soil Mn availability decreased with increasing plantation age, supporting the hypothesis of an asparagusmediated negative impact on Mn-reducing bacteria and of the involvement of reduced Mn availability in FCRR development. Improving the availability of Mn could provide a solution to the problem of FCRR in asparagus plantations.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...