Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pathol Res Pract ; 256: 155227, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38490099

RESUMEN

For the first time, a subset of small cancer cells identified in acute myeloid leukemia has been termed Cancer Stem Cells (CSCs). These cells are notorious for their robust proliferation, self-renewal abilities, significant tumor-forming potential, spread, and resistance to treatments. CSCs are a global concern, as it found in numerous types of cancer, posing a real-world challenge today. Our review encompasses research on key CSC markers, signaling pathways, and MicroRNA in three types of cancer: breast, colon, and liver. These factors play a critical role in either promoting or inhibiting cancer cell growth. The reviewed studies have shown that as cells undergo malignant transformation, there can be an increase or decrease in the expression of different Cluster of Differentiation (CD) markers on their surface. Furthermore, alterations in essential signaling pathways, such as Wnt and Notch1, may impact CSC proliferation, survival, and movement, while also providing potential targets for cancer therapies. Additionally, some research has focused on MicroRNAs due to their dual role as potential therapeutic biomarkers and their ability to enhance CSCs' response to anti-cancer drugs. MicroRNAs also regulate a wide array of cellular processes, including the self-renewal and pluripotency of CSCs, and influence gene transcription. Thus, these studies indicate that MicroRNAs play a significant role in the malignancy of various tumors. Although the gathered information suggests that specific CSC markers, signaling pathways, and MicroRNAs are influential in determining the destiny of cancer cells and could be advantageous for therapeutic strategies, their precise roles and impacts remain incompletely defined, necessitating further investigation.


Asunto(s)
Antineoplásicos , MicroARNs , Neoplasias , Humanos , MicroARNs/metabolismo , Neoplasias/metabolismo , Células Madre Neoplásicas/patología , Antineoplásicos/uso terapéutico , Transducción de Señal , Antígenos de Diferenciación/metabolismo
2.
Curr Microbiol ; 80(6): 201, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37140634

RESUMEN

Brucella spp. can replicate in human endothelial cells, inducing an inflammatory response with increased expression of chemokines. Although Brucella infects humans, its ability to induce the production of chemokines by lung cells is unknown. Therefore, the current investigation was designed to examine the association between brucellosis and CXCL9, 10, and 11 chemokines. The patient group included 71 patients suffering from Brucella infection and the control group consisted of 50 healthy ranchers from the same geographical area. Serum levels of CXCL9, CXCL10, and CXCL11 were analyzed by ELISA. The fold changes of CXCR3 expression against ß-actin were determined by real-time-PCR technique. Western blotting analysis was also applied for evaluating the expression of CXCR3 at protein level. The results of this study showed that the serum levels of CXCL9, CXCL10, and CXCL11 are significantly increased in acute brucellosis patients in comparison to control as indicated by ELISA test, mRNA levels of CXCR3 by Real-time PCR as well as protein levels of CXCR3 by Western blot analysis. According to findings, these chemokines have the potential to serve as markers for brucellosis patients. Taken together, cytokine/chemokine network was active in acute brucellosis patients, and it is suggested to evaluate other cytokines in future studies.


Asunto(s)
Brucelosis , Quimiocina CXCL10 , Humanos , Quimiocina CXCL10/genética , Leucocitos Mononucleares/metabolismo , Células Endoteliales/metabolismo , Ensayo de Inmunoadsorción Enzimática , Quimiocina CXCL9/genética , Quimiocina CXCL11/genética , Receptores CXCR3/genética , Receptores CXCR3/metabolismo
3.
Immun Inflamm Dis ; 11(4): e834, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102640

RESUMEN

As a result of smallpox immunization programs that ended more than 40 years ago, a significant portion of the world's population is not immune. Moreover, due to the lack of anti-monkeypox drugs and vaccines against monkeypox, the spread of this virus may be the beginning of another challenge. In this study, novel antibodies against monkeypox virus were modeled based on a heavy chain of human antibody and a small peptide fragment. Docking of modeled antibodies with C19L protein showed the range of docking energy, and root-mean-square deviation (RMSD) was from -124 to -154 kcal/mL and 4-6 angstrom, respectively. Also, docking of modeled antibodies-C19L complex with gamma Fc receptor type I illustrated the range of docking energy, and RMSD was from -132 to -155 kcal/ml and 5-7 angstrom, respectively. Moreover, molecular dynamics simulation showed that antibody 62 had the highest stability with the lowest energy level and RMSD. Interestingly, no modeled antibodies had immunogenicity, allergenicity, and toxicity. Although all of them had good stability, only antibodies 25, 28, 54, and 62 had a half-life of >10 h. Moreover, the interaction between C19L protein and anti-C19L antibodies (wild-type and synthetic) was evaluated by the SPR method. We found that KD in synthetic antibodies was lower than wild antibody. In terms of δH°, TδS°, and δG°, the results were consistent with binding parameters. Here, the lowest value of thermodynamic parameters was obtained for antibody 62. These data show that the synthetic antibodies, especially antibody 62, had a higher affinity than the wild-type antibody.


Asunto(s)
Mpox , Humanos , Monkeypox virus , Anticuerpos
4.
Environ Res ; 225: 115673, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36906270

RESUMEN

The application of nanoarchitectures in cancer therapy seems to be beneficial for the delivery of antitumor drugs. In recent years, attempts have been made to reverse drug resistance, one of the factors threatening the lives of cancer patients worldwide. Gold nanoparticles (GNPs) are metal nanostructures with a variety of advantageous properties, such as tunable size and shape, continuous release of chemicals, and simple surface modification. This review focuses on the application of GNPs for the delivery of chemotherapy agents in cancer therapy. Utilizing GNPs results in targeted delivery and increased intracellular accumulation. Besides, GNPs can provide a platform for the co-delivery of anticancer agents and genetic tools with chemotherapeutic compounds to exert a synergistic impact. Furthermore, GNPs can promote oxidative damage and apoptosis by triggering chemosensitivity. Due to their capacity for providing photothermal therapy, GNPs can enhance the cytotoxicity of chemotherapeutic agents against tumor cells. The pH-, redox-, and light-responsive GNPs are beneficial for drug release at the tumor site. For the selective targeting of cancer cells, surface modification of GNPs with ligands has been performed. In addition to improving cytotoxicity, GNPs can prevent the development of drug resistance in tumor cells by facilitating prolonged release and loading low concentrations of chemotherapeutics while maintaining their high antitumor activity. As described in this study, the clinical use of chemotherapeutic drug-loaded GNPs is contingent on enhancing their biocompatibility.


Asunto(s)
Antineoplásicos , Nanopartículas del Metal , Neoplasias , Humanos , Oro/química , Nanopartículas del Metal/química , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/uso terapéutico , Apoptosis , Neoplasias/tratamiento farmacológico , Resistencia a Medicamentos
5.
J Neuroimmunol ; 362: 577768, 2022 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-34823120

RESUMEN

The aim of this study was to evaluate the therapeutic effect of PEGlated nanoliposome of pistachio unsaturated oils (PEGNLPUOs) and their efficacy to attenuate inflammation in multiple sclerosis (MS). This study was a randomized, double-blind, placebo-controlled clinical trial phase I. The level of docosahexaenoic and eicosapentaenoic acid was significantly increased and the level of matrix metallopeptidase-9 was significantly decreased in MS patients treated with PEGNLPUOs. The level of cytokine showed a Th2-biased response with attenuation of inflammation after treatment with PEGNLPUOs. The number of relapses, disability scores, and T2 lesions was significantly decreased after treatment with PEGNLPUOs.


Asunto(s)
Inflamación/tratamiento farmacológico , Esclerosis Múltiple Recurrente-Remitente/tratamiento farmacológico , Sistema de Administración de Fármacos con Nanopartículas/uso terapéutico , Pistacia , Aceites de Plantas/administración & dosificación , Adulto , Método Doble Ciego , Grasas Insaturadas/administración & dosificación , Femenino , Humanos , Inflamación/inmunología , Inflamación/patología , Liposomas , Persona de Mediana Edad , Esclerosis Múltiple Recurrente-Remitente/inmunología , Esclerosis Múltiple Recurrente-Remitente/patología
6.
J Funct Biomater ; 12(4)2021 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-34842756

RESUMEN

Chitosan/PVA hydrogel films crosslinked by the freeze-thaw method and containing honey and allantoin were prepared for application as wound dressing materials. The effects of the freeze-thaw process and the addition of honey and allantoin on the swelling, the gel content and the mechanical properties of the samples were evaluated. The physicochemical properties of the samples, with and without the freeze-thaw process, were compared using FTIR, DSC and XRD. The results showed that the freeze-thaw process can increase the crystallinity and thermal stability of chitosan/PVA films. The freeze-thaw process increased the gel content but did not have a significant effect on the tensile strength. The presence of honey reduced the swelling and the tensile strength of the hydrogels due to hydrogen bonding interactions with PVA and chitosan chains. Long-term cell culture experiments using normal human dermal fibroblast (NHDF) cells showed that the hydrogels maintained their biocompatibility, and the cells showed extended morphology on the surface of the hydrogels for more than 30 days. The presence of honey significantly increased the biocompatibility of the hydrogels. The release of allantoin from the hydrogel was studied and, according to the Korsmeyer-Peppas and Weibull models, the mechanism was mainly diffusional. The results for the antimicrobial activity against E. coli and S. aureus bacteria showed that the allantoin-containing samples had a more remarkable antibacterial activity against S. aureus. According to the wound healing experiments, 98% of the wound area treated by the chitosan/PVA/honey hydrogel was closed, compared to 89% for the control. The results of this study suggest that the freeze-thaw process is a non-toxic crosslinking method for the preparation of chitosan/PVA hydrogels with long term biocompatibility that can be applied for wound healing and skin tissue engineering.

7.
Int Immunopharmacol ; 101(Pt B): 108231, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34655852

RESUMEN

The aim of this study was to evaluate self-replicating RNA lipid nanoparticles (saRNA LNPs) to neutralize SARS-CoV-2 variants delta (B.1.617 lineage) and alpha (B.1.1.7 lineage). Before immunization of mice with saRNA LNPs, we saw high expression of S-protein at both mRNA and protein levels after transfection of HEK293T/17 cells with saRNA LNPs. After oral immunization of BALB/c mice with 0.1 - 10 µg saRNA LNPs , a high quantity of SARS-CoV-2 specific IgG and IgA antibodies were seen with a dose-dependent pattern. Importantly, the ratio of IgG2a/IgG1 in serum of vaccinated mice showed Th1/Th2 skewing response. We also found that the secreted antibodies could neutralize SARS-CoV-2 variants delta (B.1.617 lineage) and alpha (B.1.1.7 lineage). Re-stimulated splenocytes of vaccinated mice showed high secretion of IFN-γ, IL-6, and TNF- α . The authors think that although the preclinical study confirmed the efficacy of saRNA LNPs against SARS-CoV-2, the actual efficacy and safety of the oral vaccine must be evaluated in clinical trials.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Liposomas/administración & dosificación , Nanopartículas/administración & dosificación , ARN/administración & dosificación , SARS-CoV-2/inmunología , Administración Oral , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Células CACO-2 , Citocinas/sangre , Citocinas/inmunología , Células HEK293 , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Ratones Endogámicos BALB C , Pruebas de Neutralización , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
8.
Sci Rep ; 11(1): 21308, 2021 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-34716391

RESUMEN

The aim of this study was to present and evaluate novel oral vaccines, based on self-amplifying RNA lipid nanparticles (saRNA LNPs), saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum, to neutralize severe acute respiratory syndrome coronavirus 2 (SARS-COV-2) variants alpha and delta. After invitro evaluation of the oral vaccines on HEK293T/17 cells, we found that saRNA LNPs, saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum could express S-protein at both mRNA and protein levels. In the next step, BALB/c mice were orally vaccinated with saRNA LNPs, saRNA transfected Lactobacillus plantarum LNPs, and saRNA transfected Lactobacillus plantarum at weeks 1 and 3. Importantly, a high titer of IgG and IgA was observed by all of them, sharply in week 6 (P < 0.05). In all study groups, their ratio of IgG2a/IgG1 was upper 1, indicating Th1-biased responses. Wild-type viral neutralization assay showed that the secreted antibodies in vaccinated mice and recovered COVID-19 patients could neutralize SARS-COV-2 variants alpha and delta. After oral administration of oral vaccines, biodistribution assay was done. It was found that all of them had the same biodistribution pattern. The highest concentration of S-protein was seen in the small intestine, followed by the large intestine and liver.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/administración & dosificación , COVID-19/prevención & control , Lactobacillus plantarum/genética , Lípidos/química , Nanopartículas/química , SARS-CoV-2/inmunología , Transfección/métodos , Vacunación/métodos , Vacunas Sintéticas/administración & dosificación , Administración Oral , Adulto , Animales , COVID-19/sangre , COVID-19/virología , Vacunas contra la COVID-19/farmacocinética , Femenino , Células HEK293 , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Intestino Delgado/metabolismo , Lactobacillus plantarum/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Modelos Animales , Pruebas de Neutralización , ARN Mensajero/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Distribución Tisular , Vacunas de ARNm
9.
Eur J Med Res ; 26(1): 75, 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34256840

RESUMEN

BACKGROUND: The aim of this study was to evaluate the expression of four up/down-regulated inflammatory miRNAs and their mRNA targets in the serum samples of COVID-19 patients with different grades. Also, we investigated the relative expression of these miRNAs and mRNAs during hospitalization. METHODS: In this cross-sectional study, 5 mL of blood sample were taken from COVID-19 patients with different grades and during hospitalization from several health centers of Yazd, Tehran, and Zahedan province of Iran from December 20, 2020 to March 2, 2021. The relative expression of miRNAs and mRNAs was evaluated by q-PCR. RESULTS: We found that the relative expression of hsa-miR-31-3p, hsa-miR-29a-3p, and hsa-miR-126-3p was significantly decreased and the relative expression of their mRNA targets (ZMYM5, COL5A3, and CAMSAP1) was significantly increased with the increase of disease grade. Conversely, the relative expression of hsa-miR-17-3p was significantly increased and its mRNA target (DICER1) was significantly decreased with the increase of disease grade. This pattern was exactly seen during hospitalization of COVID-19 patients who did not respond to treatment. In COVID-19 patients who responded to treatment, the expression of selected miRNAs and their mRNA targets returned to the normal level. A negative significant correlation was seen between (1) the expression of hsa-miR-31-3p and ZMYM5, (2) hsa-miR-29a-3p and COL5A3, (3) hsa-miR-126-3p and CAMSAP1, and (4) hsa-miR-17-3p and DICER1 in COVID-19 patients with any grade (P < 0.05) and during hospitalization. CONCLUSIONS: In this study, we gained a more accurate understanding of the expression of up/down-regulated inflammatory miRNAs in the blood of COVID-19 patients. The obtained data may help us in the diagnosis and prognosis of COVID-19. TRIAL REGISTRATION: The ethics committee of Zahedan University of Medical Sciences, Zahedan, Iran. (Ethical Code: IR.ZAUMS.REC.1399.316) was registered for this project.


Asunto(s)
COVID-19/genética , Perfilación de la Expresión Génica , MicroARNs/genética , ARN Mensajero/genética , COVID-19/sangre , COVID-19/virología , Proteínas Portadoras/genética , Colágeno/genética , Estudios Transversales , ARN Helicasas DEAD-box/genética , Hospitalización/estadística & datos numéricos , Humanos , Irán , Proteínas Asociadas a Microtúbulos/genética , Proteínas Nucleares/genética , Ribonucleasa III/genética , SARS-CoV-2/fisiología , Índice de Severidad de la Enfermedad
10.
Vaccines (Basel) ; 9(2)2021 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-33494441

RESUMEN

Nanotechnology uses the unique properties of nanostructures with a size of 1 to 200 nanometers. Different nanoparticles have shown great promise for the production of new vaccines and drugs. Nanostructures can be used to deliver immunological compounds more effectively than microstructures to target sites. Different nanostructures can be applied to form a new generation of vaccines, adjuvants, and immune system drugs. The goal of nanotechnology is to better respond to a wide range of infectious and non-infectious diseases.

11.
Food Sci Nutr ; 8(8): 4037-4043, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32884685

RESUMEN

The aim of current study was to investigate the antimicrobial effect of gum essential oil of Pistacia atlantica (wild pistachio) tree (GEO) and design a new film based on polypropylene polymer coated with silica nanoparticles and GEO. The antimicrobial activity of the packaging film was evaluated with or without milk on Staphylococcus aureus, Salmonella enterica, Escherichia coli, and Listeria monocytogenes during 35 days. The results showed that GEO has significant antibacterial properties. It was most effective on Salmonella enterica, while its effect on Listeria monocytogenes was the weakest. Antimicrobial activity of the film without milk showed no significant differences among the different sizes of nanoparticles used (0.05, 0.025, and 0.051 g) (p ≥ .05). It can be concluded that polypropylene incorporated with GEO and silica nanoparticles active film had antimicrobial properties up to 35 days, while using with milk or without milk. Therefore, this type of packaging is effective to enhance the shelf life of milk.

12.
J Neuroimmunol ; 347: 577352, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32781342

RESUMEN

The aim of this study was to investigate the effect of PEGlated nanoliposome of pistachio unsaturated oils (PEGNLPUOs) to attenuate the inflammatory response in the EAE model by modulating of NFKB and oxidative stress signaling pathway. Real-time PCR demonstrated that the administration of 10%v/v PEGNLPUOs significantly decreased the expression level of AKT1, MAPK, and NFKB genes from NFKB signaling pathway and MGST1, NOS2, and HO-1 genes from oxidative stress signaling pathway. This study showed that the administration of pistachio oil and PEGNLPUOs at a concentration of 10%v/v decreased the number and percentage of Th1(CD4+) and increased Th2(CD8+) cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Mediadores de Inflamación/antagonistas & inhibidores , Nanopartículas/administración & dosificación , Pistacia , Aceites de Plantas/uso terapéutico , Polietilenglicoles/administración & dosificación , Animales , Encefalomielitis Autoinmune Experimental/metabolismo , Mediadores de Inflamación/metabolismo , Liposomas , Ratones , Aceites de Plantas/aislamiento & purificación , Aceites de Plantas/farmacología
13.
Int J Fertil Steril ; 14(2): 150-153, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32681628

RESUMEN

Azoospermia is one of the challenging disorders affecting couples who are afflicted with infertility. Human testisderived cells (hTCs) are suitable candidates for the initiation of in-vitro spermatogenesis for these types of patients. The current study aimed to assess the proliferation of hTCs through the cell culture on the three-dimensional (3D) porous scaffolds. Cells harvested from the testicular sperm extraction (TESE) samples of the azoospermic patients were cultured on the 3D porous scaffolds containing human serum albumin (HSA)/tri calcium phosphate nanoparticles (TCP NPs) for two weeks. The proliferation/viability of the cells was assessed using the MTT assay, along with H and E histological staining method. The MTT assay showed that hTCs could stay alive on this scaffold with 50 and 66.66% viability after 7 and 14 days, respectively. Such viability was not significantly different when compared with cells grown on monolayer flask culture (P>0.05). Therefore, 3D HSA/TCP NPs scaffolds could be used for the reconstitution of the artificial human somatic testicular niche for future applications in regenerative medicine for male infertility.

14.
Colloids Surf B Biointerfaces ; 185: 110619, 2020 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-31707227

RESUMEN

In the present study, the dual function of interleukin-23 (IL-23) Aptamer to suppress brain inflammation via attachment to macrophage stimulating 1 (MST1) kinase and IL-23, was introduced. Also, the anti-inflammatory property of IL-23 Aptamer has been investigated. This study showed that IL-23 Aptamer could reduce the clinical development of brain inflammation induced by Parathion, as an important organophosphate toxin. Both immunostaining and H&E staining indicated that the total inflammatory infiltration foci were remarkably decreased in IL-23 Aptamer-treated mice. Moreover, this study showed that IL-23 Aptamer reduced both absolute and relative numbers of MST1+CD4 + Th1 cells and IL-23-producing cells. Analysis of the Hippo signaling genes showed a sharp decrease of MST1 kinase compared with other genes (P < 0.001). Moreover, computer-assisted molecular docking demonstrated that both MST1 kinase and IL-23 could tightly attach to IL-23 Aptamer, and maybe block it. Taken together, IL-23 Aptamer coud decrease brain inflammation via suppressing MST1 kinase and IL-23.


Asunto(s)
Aptámeros de Péptidos/metabolismo , Encefalitis/metabolismo , Interleucina-23/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Animales , Enfermedades Desmielinizantes/patología , Encefalitis/patología , Femenino , Regulación de la Expresión Génica , Macrófagos/metabolismo , Ratones , Simulación del Acoplamiento Molecular
15.
Cell J ; 21(3): 300-306, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31210436

RESUMEN

OBJECTIVE: Recent achievements in stem cell biotechnology, nanotechnology and tissue engineering have led to development of novel approaches in regenerative medicine. Azoospermia is one of the challenging disorders of the reproductive system. Several efforts were made for isolation and culture of testis-derived stem cells to treat male infertility. However, tissue engineering is the best approach to mimic the three dimensional microenvironment of the testis in vitro. We investigated whether human testis-derived cells (hTCs) obtained by testicular sperm extraction (TESE) can be cultured on a homemade scaffold composed of electrospun nanofibers of homogeneous poly (vinyl alcohol)/human serum albumin/gelatin (PVA/HSA/gelatin). MATERIALS AND METHODS: In this experimental lab study, human TCs underwent two steps of enzymatic cell isolation and five culture passages. Nanofibrous scaffolds were characterized by scanning electron microscopy (SEM) and Fouriertransform infrared spectroscopy (FTIR). Attachment of cells onto the scaffold was shown by hematoxylin and eosin (H and E) staining and SEM. Cell viability study using MTT [3-(4, 5-dimethyl-2-thiazolyl) -2, 5-diphenyl -2H- tetrazolium bromide] assay was performed on days 7 and 14. RESULTS: Visualization by H and E staining and SEM indicated that hTCs were seeded on the scaffold. MTT test showed that the PVA/HSA/gelatin scaffold is not toxic for hTCs. CONCLUSION: It seems that this PVA/HSA/gelatin scaffold is supportive for growth of hTCs.

16.
J Neuroimmunol ; 326: 75-78, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30530109

RESUMEN

The aim of this study was to use liposomal structure consisting prodigiosin and plasmid encoding serial GCA nucleotides (LP/pSGCAN) to reduce inflammation in microglial cells (MGCs) and astrocyte cells (ACCs) by ATM/ATR signaling. Here, it was shown that LP/pSGCAN decreased cell viability and total RNA level. Importantly, LP/pSGCAN had more effect on ACCs than MGCs (P < 0.05). Moreover, increase of apoptosis was seen with increase of concentration. The expression of IL-1 and IL-6 were decreased and the expression of ATM and ATR were increased in treated MGCs and ACCs, which showed LP/pSGCAN could inhibit inflammation by activation of ATM/ATR pathway.


Asunto(s)
Inflamación/metabolismo , Inhibidores de la Síntesis del Ácido Nucleico/farmacología , Nucleótidos/farmacología , Prodigiosina/farmacología , Animales , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/efectos de los fármacos , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Células Cultivadas , Humanos , Liposomas/metabolismo , Microglía/efectos de los fármacos , Microglía/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología
17.
J Neuroimmunol ; 326: 79-83, 2019 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-30544018

RESUMEN

The purpose of this study was to evaluate the anti-inflammatory property of gelatin hydrogel containing cerium oxide nanoparticles coated with interleukin-17 Aptemer ([CeON@IL-17]). Here, the brain inflammation model was induced by both proteolipid protein (PLP) and parathion. Then, the expression of some inflammatory genes and the serum level of related interleukins were evaluated. This study showed that the expression of IL-17, IL-10, and IL-6 genes and their serum levels were significantly decreased (P < .05) by administration of gelatin hydrogel containing [CeON@IL-17].


Asunto(s)
Antiinflamatorios/farmacología , Encéfalo/efectos de los fármacos , Portadores de Fármacos , Interleucina-17 , Animales , Aptámeros de Péptidos , Cerio , Inhibidores de la Colinesterasa/toxicidad , Portadores de Fármacos/química , Portadores de Fármacos/farmacología , Encefalitis/inducido químicamente , Femenino , Hidrogeles , Inflamación/inducido químicamente , Ratones , Ratones Endogámicos C57BL , Nanopartículas , Paratión/toxicidad
18.
Adv Colloid Interface Sci ; 240: 1-14, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27988019

RESUMEN

Combining nanoparticles with carbohydrate has triggered an exponential growth of research activities for the design of novel functional bionanomaterials, nano-carbohydrates. Recent advances in versatile synthesis of glycosylated nanoparticles have paved the way towards diverse biomedical applications. The accessibility of a wide variety of these structured nanosystems, in terms of shape, size, and organization around stable nanoparticles, has readily contributed to their development and application in nanomedicine. Glycosylated gold nanoparticles, glycosylated quantum dots, fullerenes, single-wall nanotubes, and self-assembled glyconanoparticles using amphiphilic glycopolymers or glycodendrimers have received considerable attention for their application in powerful imaging, therapeutic, and biodiagnostic devices. Recently, nano-carbohydrates were used for different types of microarrays to detect proteins and nucleic acids.


Asunto(s)
Biotecnología/métodos , Carbohidratos/química , Carbohidratos/síntesis química , Genética , Nanomedicina/métodos , Nanoestructuras/química , Animales , Técnicas de Química Sintética , Humanos
19.
Colloids Surf B Biointerfaces ; 136: 323-8, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26432619

RESUMEN

The main aim of this study was to evaluate the capability of silica nanowire conjugated with loop-shaped oligonucleotides (SNWCLSOs) to silence cysteine proteinase b (Cpb) gene in Leishmania (L) tropica. On the other hand, its toxicity on amastigotes and mouse peritoneal macrophages was evaluated by 5-diphenyl-tetrazolium bromide (MTT) assay. For control, two loop-shaped oligonucleotides (LSO) were considered. LSO1 and LSO2 were 5'-NH2-cccccaaaaaaaaaaaaaaaaaaaaaaaaaggggg-COOH-3' and LSO2: 5'-NH2-cccccttttttttttttttttttttttttttttttttttttttggggg-COOH-3', respectively. After 72 h incubation at 37 °C, AMSNW, LSO1, and LSO2 had no remarkable toxicity on L. tropica amastigote (2 × 10(5)/mL) and mouse peritoneal macrophages (2 × 10(5)/mL). In case of SNWCLSOs, they had high toxicity on L. tropica amastigote, but they had no effect on mouse peritoneal macrophages. At concentrations of 1, 10, and 25 µg/mL, AMSNW, LSO1 and LSO2 had no effect on the gene expression. But, at concentration of 50 and 100 µg/mL, decrease of gene expression was observed. In case of SNWCLSOs, they could dramatically decrease the gene expression. It could be concluded that since SNWCLSOs could silence Cpb gene with no remarkable toxicity, they are good choice for treat cutaneous leishmaniasis in future. As a new agent, it must be checked in vivo.


Asunto(s)
Proteasas de Cisteína/genética , Expresión Génica , Genes Protozoarios , Leishmania tropica/enzimología , Nanocables , Oligonucleótidos/química , Dióxido de Silicio/química , Secuencia de Bases , ADN Protozoario , Leishmania tropica/genética , Microscopía Electrónica de Rastreo , Datos de Secuencia Molecular
20.
Colloids Surf B Biointerfaces ; 136: 300-4, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26413865

RESUMEN

The aim of this study was to investigate the effect of magnesium oxide nanoparticles (MgO NPs) and MgO NPs coated with glucose (MONPCG) on Leishmania (L) major. First, the promastigotes of L. major were separately incubated with serial concentrations of MgO NPs and MONPCG for 24, 48, and 72 h at 37 °C. Then, the cell viability of promastigotes was evaluated by MTT assay. On the other hand, the relative expression of Cpb and GP63 genes was detected by quantitative-real time PCR. Based on results, the increase of concentration, both MgO NPs and MONPCG, and incubation time led to decrease of cell viability. Moreover, the expression of Cpb and GP63 genes was decreased with increase of concentration of MgO NPs and MONPCG. Also, the increase of incubation time led to decrease of their expression in MgO NPs treated promastogotes. But, in case of MONPCG treated promastogotes, the increase of incubation time did not change the expression of Cpb and GP63. Interestingly, MONPCG could silence Cpb and GP63 genes better than MgO NPs. Note, the capability was also seen at sub-toxic concentrations of MONPCG.


Asunto(s)
Silenciador del Gen , Genes Protozoarios , Glucosa/química , Leishmania major/genética , Óxido de Magnesio/química , Nanopartículas del Metal/química , Microscopía Electrónica de Rastreo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...