Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Micromachines (Basel) ; 15(8)2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39203587

RESUMEN

This study presents the design and comprehensive 3D multiphysics simulation of a novel microfluidic immunosensor for non-invasive, real-time detection of pro-inflammatory biomarkers in human sweat. The patch-like device integrates magnetofluidic manipulation of antibody-functionalized magnetic nanoparticles (MNPs) with direct-field capacitive sensing (DF-CS). This unique combination enhances sensitivity, reduces parasitic capacitance, and enables a more compact design compared to traditional fringing-field approaches. A comprehensive 3D multiphysics simulation of the device, performed using COMSOL Multiphysics, demonstrates its operating principle by analyzing the sensor's response to changes in the dielectric properties of the medium due to the presence of magnetic nanoparticles. The simulation reveals a sensitivity of 42.48% at 85% MNP occupancy within the detection zone, highlighting the sensor's ability to detect variations in MNP concentration, and thus indirectly infer biomarker levels, with high precision. This innovative integration of magnetofluidic manipulation and DF-CS offers a promising new paradigm for continuous, non-invasive health monitoring, with potential applications in point-of-care diagnostics, personalized medicine, and preventive healthcare.

2.
ACS Omega ; 6(48): 33130-33140, 2021 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-34901664

RESUMEN

Transition-metal oxides such as cupric and cuprous oxides are strongly correlated materials made of earth-abundant chemical elements displaying energy band gaps of around 1.2 and 2.1 eV. The ability to design nanostructures of cupric and cuprous oxide semiconductors with in situ phase change and morphological transition will benefit several applications including photovoltaic energy conversion and photoelectrochemical water splitting. Here, we have developed a physicochemical route to synthesize copper oxide nanostructures, enabling the phase change of cupric oxide into cuprous oxide using an electric field of 105 V/m in deionized water via a new synthetic design protocol called electric-field-assisted pulsed laser ablation in liquids (EFA-PLAL). The morphology of the nanostructures can also be tuned from a sphere of ∼20 nm to an elongated leaf of ∼3 µm by controlling the intensity of the applied electric field. Futuristically, the materials chemistry occurring during the EFA-PLAL synthesis protocol developed here can be leveraged to design various strongly correlated nanomaterials and heterostructures of other 3d transition-metal oxides.

3.
RSC Adv ; 11(37): 22723-22733, 2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-35480429

RESUMEN

Zinc oxide (ZnO) is a II-VI group semiconductor with a wide direct bandgap and is an important material for various fields of industry and high-technological applications. The effects of thickness, annealing process in N2 and air, optical properties, and morphology of ZnO thin-films are studied. A low-cost sol-gel spin-coating technique is used in this study for the simple synthesis of eco-friendly ZnO multilayer films deposited on (100)-oriented silicon substrates ranging from 150 to 600 nm by adjusting the spin coating rate. The ZnO sol-gel thin-films using precursor solutions of molarity 0.75 M exhibit an average optical transparency above 98%, with an optical band gap energy of 3.42 eV. The c-axis (002) orientation of the ZnO thin-films annealed at 400 °C were mainly influenced by the thickness of the multilayer, which is of interest for piezoelectric applications. These results demonstrate that a low-temperature method can be used to produce an eco-friendly, cost-effective ZnO sol-gel that is compatible with a complementary metal-oxide-semiconductor (CMOS) and integrated-circuits (IC).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA