Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Plant Sci ; 319: 111239, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35487652

RESUMEN

Elicitins are proteinaceous elicitors that induce the hypersensitive response and plant resistance against diverse phytopathogens. Elicitin recognition by membrane receptors or high-affinity sites activates a variety of fast responses including the production of reactive oxygen species (ROS) and nitric oxide (NO), leading to induction of plant defense genes. Beta-cryptogein (CRY) is a basic ß-elicitin secreted by the oomycete Phytophthora cryptogea that shows high necrotic activity in some plant species, whereas infestin 1 (INF1) secreted by the oomycete P. infestans belongs to acidic α-elicitins with a significantly weaker capacity to induce necrosis. We compared several mutated forms of ß-CRY and INF1 with a modulated capacity to trigger ROS and NO production, bind plant sterols and induce cell death responses in cell cultures of Nicotiana tabacum L. cv. Xanthi. We evidenced a key role of the lysine residue in position 13 in basic elicitins for their biological activity and enhancement of necrotic effects of acidic INF1 by the replacement of the valine residue in position 84 by larger phenylalanine. Studied elicitins activated in differing intensity signaling pathways of ROS, NO and phytohormones jasmonic acid, ethylene and salicylic acid, known to be involved in triggering of hypersensitive response and establishment of systemic resistance.


Asunto(s)
Nitrógeno , Phytophthora , Proteínas Algáceas/genética , Secuencia de Aminoácidos , Proteínas Fúngicas/metabolismo , Oxígeno , Plantas/metabolismo , Especies Reactivas de Oxígeno , Relación Estructura-Actividad
2.
Hortic Res ; 8(1): 34, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33518717

RESUMEN

Regulation of protein function by reversible S-nitrosation, a post-translational modification based on the attachment of nitroso group to cysteine thiols, has emerged among key mechanisms of NO signalling in plant development and stress responses. S-nitrosoglutathione is regarded as the most abundant low-molecular-weight S-nitrosothiol in plants, where its intracellular concentrations are modulated by S-nitrosoglutathione reductase. We analysed modulations of S-nitrosothiols and protein S-nitrosation mediated by S-nitrosoglutathione reductase in cultivated Solanum lycopersicum (susceptible) and wild Solanum habrochaites (resistant genotype) up to 96 h post inoculation (hpi) by two hemibiotrophic oomycetes, Phytophthora infestans and Phytophthora parasitica. S-nitrosoglutathione reductase activity and protein level were decreased by P. infestans and P. parasitica infection in both genotypes, whereas protein S-nitrosothiols were increased by P. infestans infection, particularly at 72 hpi related to pathogen biotrophy-necrotrophy transition. Increased levels of S-nitrosothiols localised in both proximal and distal parts to the infection site, which suggests together with their localisation to vascular bundles a signalling role in systemic responses. S-nitrosation targets in plants infected with P. infestans identified by a proteomic analysis include namely antioxidant and defence proteins, together with important proteins of metabolic, regulatory and structural functions. Ascorbate peroxidase S-nitrosation was observed in both genotypes in parallel to increased enzyme activity and protein level during P. infestans pathogenesis, namely in the susceptible genotype. These results show important regulatory functions of protein S-nitrosation in concerting molecular mechanisms of plant resistance to hemibiotrophic pathogens.

3.
J Exp Bot ; 72(3): 848-863, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33367760

RESUMEN

Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.


Asunto(s)
Óxido Nítrico , Oomicetos , Hongos , Interacciones Huésped-Patógeno , Enfermedades de las Plantas
4.
Plants (Basel) ; 9(11)2020 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-33114295

RESUMEN

S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.

5.
Plant Physiol Biochem ; 155: 297-310, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32795911

RESUMEN

Nitric oxide plays an important role in the pathogenesis of Pseudoidium neolycopersici, the causative agent of tomato powdery mildew. S-nitrosoglutathione reductase, the key enzyme of S-nitrosothiol homeostasis, was investigated during plant development and following infection in three genotypes of Solanum spp. differing in their resistance to P. neolycopersici. Levels and localization of reactive nitrogen species (RNS) including NO, S-nitrosoglutathione (GSNO) and peroxynitrite were studied together with protein nitration and the activity of nitrate reductase (NR). GSNOR expression profiles and enzyme activities were modulated during plant development and important differences among Solanum spp. genotypes were observed, accompanied by modulation of NO, GSNO, peroxynitrite and nitrated proteins levels. GSNOR was down-regulated in infected plants, with exception of resistant S. habrochaites early after inoculation. Modulations of GSNOR activities in response to pathogen infection were found also on the systemic level in leaves above and below the inoculation site. Infection strongly increased NR activity and gene expression in resistant S. habrochaites in contrast to susceptible S. lycopersicum. Obtained data confirm the key role of GSNOR and modulations of RNS during plant development under normal conditions and point to their involvement in molecular mechanisms of tomato responses to biotrophic pathogens on local and systemic levels.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Enfermedades de las Plantas , Especies de Nitrógeno Reactivo/metabolismo , Solanum lycopersicum/enzimología , Solanum lycopersicum/microbiología , Ascomicetos/patogenicidad , Genotipo , Enfermedades de las Plantas/microbiología
6.
Biomolecules ; 9(9)2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31438648

RESUMEN

S-nitrosoglutathione reductase (GSNOR) exerts crucial roles in the homeostasis of nitric oxide (NO) and reactive nitrogen species (RNS) in plant cells through indirect control of S-nitrosation, an important protein post-translational modification in signaling pathways of NO. Using cultivated and wild tomato species, we studied GSNOR function in interactions of key enzymes of reactive oxygen species (ROS) metabolism with RNS mediated by protein S-nitrosation during tomato root growth and responses to salinity and cadmium. Application of a GSNOR inhibitor N6022 increased both NO and S-nitrosothiol levels and stimulated root growth in both genotypes. Moreover, N6022 treatment, as well as S-nitrosoglutathione (GSNO) application, caused intensive S-nitrosation of important enzymes of ROS metabolism, NADPH oxidase (NADPHox) and ascorbate peroxidase (APX). Under abiotic stress, activities of APX and NADPHox were modulated by S-nitrosation. Increased production of H2O2 and subsequent oxidative stress were observed in wild Solanumhabrochaites, together with increased GSNOR activity and reduced S-nitrosothiols. An opposite effect occurred in cultivated S. lycopersicum, where reduced GSNOR activity and intensive S-nitrosation resulted in reduced ROS levels by abiotic stress. These data suggest stress-triggered disruption of ROS homeostasis, mediated by modulation of RNS and S-nitrosation of NADPHox and APX, underlies tomato root growth inhibition by salinity and cadmium stress.


Asunto(s)
Aldehído Oxidorreductasas/metabolismo , Cadmio/toxicidad , Proteínas de Plantas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Cloruro de Sodio/farmacología , Solanum lycopersicum/efectos de los fármacos , Ascorbato Peroxidasas/metabolismo , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Peróxido de Hidrógeno/metabolismo , Solanum lycopersicum/crecimiento & desarrollo , Solanum lycopersicum/metabolismo , NADPH Oxidasas/metabolismo , Óxido Nítrico/metabolismo , Nitrosación , Estrés Oxidativo/efectos de los fármacos , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Pirroles/química , Pirroles/metabolismo , Pirroles/farmacología , Especies de Nitrógeno Reactivo/química , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/química , S-Nitrosoglutatión/farmacología , S-Nitrosotioles/metabolismo , Solanum/crecimiento & desarrollo , Solanum/metabolismo , Estrés Fisiológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...