Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-38473902

RESUMEN

The increase in bacterial resistance to antibiotics in recent years demands innovative strategies for the detection and combating of biofilms, which are notoriously resilient. Biofilms, particularly those on contact lenses, can lead to biofilm-related infections (e.g., conjunctivitis and keratitis), posing a significant risk to patients. Non-destructive and non-contact sensing techniques are essential in addressing this threat. Digital holographic tomography emerges as a promising solution. This allows for the 3D reconstruction of the refractive index distribution in biological samples, enabling label-free visualization and the quantitative analysis of biofilms. This tool provides insight into the dynamics of biofilm formation and maturation on the surface of transparent materials. Applying digital holographic tomography for biofilm examination has the potential to advance our ability to combat the antibiotic bacterial resistance crisis. A recent study focused on characterizing biofilm formation and maturation on six soft contact lens materials (three silicone hydrogels, three hydrogels), with a particular emphasis on Staphylococcus epidermis and Pseudomonas aeruginosa, both common culprits in ocular infections. The results revealed species- and time-dependent variations in the refractive indexes and volumes of biofilms, shedding light on cell dynamics, cell death, and contact lens material-related factors. The use of digital holographic tomography enables the quantitative analysis of biofilm dynamics, providing us with a better understanding and characterization of bacterial biofilms.


Asunto(s)
Biopelículas , Lentes de Contacto Hidrofílicos , Humanos , Bacterias , Antibacterianos , Hidrogeles , Lentes de Contacto Hidrofílicos/microbiología , Pseudomonas aeruginosa/fisiología
2.
Viruses ; 16(1)2023 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-38257758

RESUMEN

Multiple pathogens are competing against the human immune response, leading to outbreaks that are increasingly difficult to control. For example, the SARS-CoV-2 virus continually evolves, giving rise to new variants. The ability to evade the immune system is a crucial factor contributing to the spread of these variants within the human population. With the continuous emergence of new variants, it is challenging to comprehend all the possible combinations of previous infections, various vaccination types, and potential exposure to new variants in an individual patient. Rather than conducting variant-to-variant comparisons, an efficient approach could involve identifying key protein regions associated with the immune evasion of existing immunity against the virus. In this study, we propose a new biotechnological application of bacteriophages, the phage display platform for experimental identification of regions (linear epitopes) that may function as cross-reacting IgG hotspots in SARS-CoV-2 structural proteins. A total of 34,949 epitopes derived from genomes of all SARS-CoV-2 variants deposited prior to our library design were tested in a single assay. Cross-reacting IgG hotspots are protein regions frequently recognized by cross-reacting antibodies in many variants. The assay facilitated the one-step identification of immunogenic regions of proteins that effectively induced specific IgG in SARS-CoV-2-infected patients. We identified four regions demonstrating both significant immunogenicity and the activity of a cross-reacting IgG hotspot in protein S (located at NTD, RBD, HR1, and HR2/TM domains) and two such regions in protein N (at 197-280 and 358-419 aa positions). This novel method for identifying cross-reacting IgG hotspots holds promise for informing vaccine design and serological diagnostics for COVID-19 and other infectious diseases.


Asunto(s)
Bacteriófagos , COVID-19 , Humanos , SARS-CoV-2/genética , Evasión Inmune , Epítopos , Inmunoglobulina G
3.
Sci Rep ; 12(1): 15944, 2022 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-36153350

RESUMEN

Predictors for the risk of severe COVID-19 are crucial for patient care and control of the disease. Other infectious diseases as potential comorbidities in SARS-CoV-2 infection are still poorly understood. Here we identify association between the course of COVID-19 and Lyme disease (borreliosis), caused by Borrelia burgdorferi transmitted to humans by ticks. Exposure to Borrelia was identified by multi-antigenic (19 antigens) serological testing of patients: severe COVID-19 (hospitalized), asymptomatic to mild COVID-19 (home treated or not aware of being infected), and not infected with SARS-CoV-2. Increased levels of Borrelia-specific IgGs strongly correlated with COVID-19 severity and risk of hospitalization. This suggests that a history of tick bites and related infections may contribute to the risks in COVID-19. Though mechanisms of this link is not clear yet, screening for antibodies targeting Borrelia may help accurately assess the odds of hospitalization for SARS-CoV-2 infected patients, supporting efforts for efficient control of COVID-19.


Asunto(s)
Borrelia burgdorferi , Borrelia , COVID-19 , Ixodes , Enfermedad de Lyme , Animales , COVID-19/epidemiología , Humanos , Enfermedad de Lyme/diagnóstico , SARS-CoV-2
4.
PLoS One ; 17(9): e0274095, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36083875

RESUMEN

The immune response and specific antibody production in COVID-19 are among the key factors that determine both prognostics for individual patients and the global perspective for controlling the pandemics. So called "dark figure", that is, a part of population that has been infected but not registered by the health care system, make it difficult to estimate herd immunity and to predict pandemic trajectories. Here we present a follow up study of population screening for hidden herd immunity to SARS-CoV-2 in individuals who had never been positively diagnosed against SARS-CoV-2; the first screening was in May 2021, and the follow up in December 2021. We found that specific antibodies targeting SARS-CoV-2 detected in May as the "dark figure" cannot be considered important 7 months later due to their significant drop. On the other hand, among participants who at the first screening were negative for anti-SARS-CoV-2 IgG, and who have never been diagnosed for SARS-CoV-2 infection nor vaccinated, 26% were found positive for anti-SARS-CoV-2 IgG. This can be attributed to of the "dark figure" of the recent, fourth wave of the pandemic that occurred in Poland shortly before the study in December. Participants who were vaccinated between May and December demonstrated however higher levels of antibodies, than those who undergone mild or asymptomatic (thus unregistered) infection. Only 7% of these vaccinated participants demonstrated antibodies that resulted from infection (anti-NCP). The highest levels of protection were observed in the group that had been infected with SARS-CoV-2 before May 2021 and also fully vaccinated between May and December. These observations demonstrate that the hidden fraction of herd immunity is considerable, however its potential to suppress the pandemics is limited, highlighting the key role of vaccinations.


Asunto(s)
COVID-19 , SARS-CoV-2 , Anticuerpos Antivirales , COVID-19/epidemiología , Estudios de Seguimiento , Humanos , Inmunoglobulina G , Seroconversión
5.
Nanomedicine ; 43: 102552, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35346834

RESUMEN

Vitamin D3 deficiency has serious health consequences, as demonstrated by its effect on severity and recovery after COVID-19 infection. Because of high hydrophobicity, its absorption and subsequent redistribution throughout the body are inherently dependent on the accompanying lipids and/or proteins. The effective oral vitamin D3 formulation should ensure penetration of the mucus layer followed by internalization by competent cells. Isothermal titration calorimetry and computer simulations show that vitamin D3 molecules cannot leave the hydrophobic environment, indicating that their absorption is predominantly driven by the digestion of the delivery vehicle. In the clinical experiment, liposomal vitamin D3 was compared to the oily formulation. The results obtained show that liposomal vitamin D3 causes a rapid increase in the plasma concentration of calcidiol. No such effect was observed when the oily formulation was used. The effect was especially pronounced for people with severe vitamin D3 deficiency.


Asunto(s)
COVID-19 , Colecalciferol , Disponibilidad Biológica , Humanos , Liposomas
6.
PLoS One ; 17(2): e0253638, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35113873

RESUMEN

Population immunity (herd immunity) to SARS-CoV-2 derives from two sources: vaccinations or cases of infection with the virus. Infections can be diagnosed as COVID-19 and registered, or they can be asymptomatic, oligosymptomatic, or even full-blown but undiagnosed and unregistered when patients recovered at home. Estimation of population immunity to SARS-CoV-2 is difficult and remains a subject of speculations. Here we present a population screening for SARS-CoV-2 specific IgG and IgA antibodies in Polish citizens (N = 501) who had never been positively diagnosed with or vaccinated against SARS-CoV-2. Serum samples were collected in Wroclaw (Lower Silesia) on 15th and 22nd May 2021. Sera from hospitalized COVID-19 patients (N = 22) or from vaccinated citizens (N = 14) served as positive controls. Sera were tested with Microblot-Array COVID-19 IgG and IgA (quantitative) that contain specific SARS-CoV-2 antigens: NCP, RBD, Spike S2, E, ACE2, PLPro protein, and antigens for exclusion cross-reactivity with other coronaviruses: MERS-CoV, SARS-CoV, HCoV 229E Np, HCoV NL63 Np. Within the investigated population of healthy individuals who had never been positively diagnosed with or vaccinated against SARS-CoV-2, we found that 35.5% (178 out of 501) were positive for SARS-CoV-2-specific IgG and 52.3% (262 out of 501) were positive for SARS-CoV-2-specific IgA; 21.2% of the investigated population developed virus-specific IgG or IgA while being asymptomatic. Anti-RBD IgG, which represents virus-neutralizing potential, was found in 25.6% of individuals (128 out of 501). These patients, though positive for anti-SARS-CoV-2 antibodies, cannot be identified in the public health system as convalescents due to undiagnosed infections, and they are considered unaffected by SARS-CoV-2. Their contribution to population immunity against COVID-19 should however be considered in predictions and modeling of the COVID-19 pandemic. Of note, the majority of the investigated population still lacked anti-RBD IgG protection (74.4%); thus vaccination against COVID-19 is still of the most importance for controlling the pandemic.


Asunto(s)
Infecciones Asintomáticas/epidemiología , Vacunas contra la COVID-19/uso terapéutico , COVID-19/epidemiología , COVID-19/inmunología , Inmunidad Colectiva , Pandemias/prevención & control , SARS-CoV-2/inmunología , Vacunación/métodos , Adolescente , Adulto , Anciano , Anticuerpos Antivirales/sangre , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , COVID-19/sangre , COVID-19/prevención & control , Reacciones Cruzadas , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina A/inmunología , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Masculino , Persona de Mediana Edad , Polonia/epidemiología , Resultado del Tratamiento , Adulto Joven
7.
Cells ; 10(12)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34943866

RESUMEN

Abdominal aortic aneurysm (AAA) is an immune-mediated disease with a genetic component. The multifactorial pathophysiology is not clear and there is still no pharmacotherapy to slow the growth of aneurysms. The signal integration of cell-surface KIRs (killer cell immunoglobulin-like receptors) with HLA (ligands, human leukocyte class I antigen molecules) modulates the activity of natural killer immune cells. The genetic diversity of the KIR/HLA system is associated with the risk of immune disorders. This study was a multivariate analysis of the association between genetic variants of KIRs, HLA ligands, clinical data and AAA formation. Genotyping was performed by single polymerase chain reaction with sequence-specific primers using commercial assays. Patients with HLA-A-Bw4 have a larger aneurysm by an average of 4 mm (p = 0.008). We observed a relationship between aneurysm diameter and BMI in patients with AAA and co-existing CAD; its shape was determined by the presence of HLA-A-Bw4. There was also a nearly 10% difference in KIR3DL1 allele frequency between the study and control groups. High expression of the cell surface receptor KIR3DL1 may protect, to some extent, against AAA. The presence of HLA-A-Bw4 may affect the rate of aneurysm growth and represents a potential regional pathogenetic risk of autoimmune injury to the aneurysmal aorta.


Asunto(s)
Aneurisma de la Aorta Abdominal/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Antígenos HLA/genética , Receptores KIR/genética , Adulto , Anciano , Anciano de 80 o más Años , Índice de Masa Corporal , Estudios de Casos y Controles , Enfermedad de la Arteria Coronaria/genética , Femenino , Antígenos HLA/metabolismo , Haplotipos/genética , Humanos , Ligandos , Masculino , Persona de Mediana Edad , Receptores KIR/metabolismo
8.
J Gen Virol ; 102(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34816794

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally; recognition of immune responses to this virus will be crucial for coronavirus disease 2019 (COVID-19) control, prevention and treatment. We comprehensively analysed IgG and IgA antibody responses to the SARS-CoV-2 nucleocapsid protein (N), spike protein domain 1 (S1) and envelope protein (E) in: SARS-CoV-2-infected patient, healthy, historical and pre-epidemic samples, including patients' medical, epidemiological and diagnostic data, virus-neutralizing capability and kinetics. N-specific IgG and IgA are the most reliable diagnostic targets for infection. Serum IgG levels correlate to IgA levels. Half a year after infection, anti-N and anti-S1 IgG decreased, but sera preserved virus-inhibitory potency; thus, testing for IgG may underestimate the protective potential of antibodies. Historical and pre-epidemic sera did not inhibit SARS-CoV-2, thus its circulation before the pandemic and a protective role from antibodies pre-induced by other coronaviruses cannot be confirmed by this study.


Asunto(s)
Anticuerpos Antivirales/sangre , COVID-19/sangre , Proteínas de la Envoltura de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19/virología , Femenino , Humanos , Inmunoglobulina A/sangre , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Fosfoproteínas/inmunología , SARS-CoV-2/genética , Adulto Joven
9.
Front Immunol ; 12: 664474, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34149699

RESUMEN

Lung cancer is strongly associated with cigarette smoking; nevertheless some never-smokers develop cancer. Immune eradication of cancer cells is dependent on polymorphisms of HLA class I molecules and antigen-processing machinery (APM) components. We have already published highly significant associations of single nucleotide polymorphisms (SNPs) of the ERAP1 gene with non-small cell lung cancer (NSCLC) in Chinese, but not in Polish populations. However, the smoking status of participants was not known in the previous study. Here, we compared the distribution of APM polymorphic variants in larger cohorts of Polish patients with NSCLC and controls, stratified according to their smoking status. We found significant but opposite associations in never-smokers and in smokers of all tested SNPs (rs26653, rs2287987, rs30187, and rs27044) but one (rs26618) in ERAP1. No significant associations were seen in other genes. Haplotype analysis indicated that the distribution of many ERAP1/2 haplotypes is opposite, depending on smoking status. Additionally, haplotypic combination of low activity ERAP1 and the lack of an active form of ERAP2 seems to favor the disease in never-smokers. We also revealed interesting associations of some APM polymorphisms with: age at diagnosis (ERAP1 rs26653), disease stage (ERAP1 rs27044, PSMB9 rs17587), overall survival (ERAP1 rs30187), and response to chemotherapy (ERAP1 rs27044). The results presented here may suggest the important role for ERAP1 in the anti-cancer response, which is different in smokers versus never-smokers, depending to some extent on the presence of ERAP2, and affecting NSCLC clinical course.


Asunto(s)
Presentación de Antígeno/genética , Biomarcadores de Tumor/genética , Carcinoma de Pulmón de Células no Pequeñas/etiología , Neoplasias Pulmonares/genética , Polimorfismo Genético , Adulto , Anciano , Alelos , Aminopeptidasas/genética , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , Neoplasias Pulmonares/diagnóstico , Masculino , Persona de Mediana Edad , Antígenos de Histocompatibilidad Menor/genética , Estadificación de Neoplasias , Polimorfismo de Nucleótido Simple , Medición de Riesgo , Fumadores
10.
Bioorg Med Chem ; 28(18): 115556, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32828419

RESUMEN

Drug delivery vectors are widely applied to increase drug efficacy while reducing the side effects and potential toxicity of a drug. They allow for patient-tailored therapy, dose titration, and therapeutic drug monitoring. A major part of drug delivery systems makes use of large nanocarriers: liposomes or virus-like particles (VLPs). These systems allow for a relatively large amount of cargo with good stability of vectors, and they offer multiple options for targeting vectors in vivo. Here we discuss endocytic pathways that are available for drug delivery by large nanocarriers. We focus on molecular aspects of the process, including an overview of potential molecular targets for studies of drug delivery vectors and for future solutions allowing targeted drug delivery.


Asunto(s)
Preparaciones de Acción Retardada/química , Endocitosis/efectos de los fármacos , Nanocápsulas/química , Animales , Transporte Biológico , Biomarcadores/metabolismo , Preparaciones de Acción Retardada/metabolismo , Composición de Medicamentos , Humanos , Liposomas/química , Terapia Molecular Dirigida , Tamaño de la Partícula , Polímeros/química
11.
Int J Mol Sci ; 21(9)2020 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-32397135

RESUMEN

Apoptosis is a process of programmed cell death which has an important role in tissue homeostasis and in the control of organism development. Here, we focus on information concerning the role of the extrinsic apoptotic pathway in the control of human erythropoiesis. We discuss the role of tumor necrosis factor α (TNFα), tumor necrosis factor ligand superfamily member 6 (FasL), tumor necrosis factor-related apoptosis-inducing (TRAIL) and caspases in normal erythroid maturation. We also attempt to initiate a discussion on the observations that mature erythrocytes contain most components of the receptor-dependent apoptotic pathway. Finally, we point to the role of the extrinsic apoptotic pathway in ineffective erythropoiesis of different types of ß-thalassemia.


Asunto(s)
Apoptosis/efectos de los fármacos , Apoptosis/genética , Eritropoyesis/genética , Transducción de Señal/genética , Talasemia beta/sangre , Caspasas/metabolismo , Dominio Efector de Muerte/genética , Eritrocitos/efectos de los fármacos , Eritrocitos/metabolismo , Eritropoyesis/efectos de los fármacos , Proteína Ligando Fas/metabolismo , Humanos , Transducción de Señal/efectos de los fármacos , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Talasemia beta/genética
12.
Front Immunol ; 10: 2607, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31803179

RESUMEN

In therapeutic phage applications oral administration is a common and well-accepted delivery route. Phages applied per os may elicit a specific humoral response, which may in turn affect phage activity. We present specific anti-phage antibody induction in mice receiving therapeutic staphylococcal bacteriophage A3R or 676Z in drinking water. The schedule comprised: (1) primary exposure to phages for 100 days, followed by (2) diet without phage for 120 days, and (3) secondary exposure to the same phage for 44 days. Both phages induced specific antibodies in blood (IgM, IgG, IgA), even though poor to ineffective translocation of the phages to blood was observed. IgM reached a maximum on day 22, IgG increased from day 22 until the end of the experiment. Specific IgA in the blood and in the gut were induced simultaneously within about 2 months; the IgA level gradually decreased when phage was removed from the diet. Importantly, phage-specific IgA was the limiting factor for phage activity in the gastrointestinal tract. Multicopy proteins (major capsid protein and tail morphogenetic protein H) contributed significantly to phage immunogenicity (IgG), while the baseplate protein gpORF096 did not induce a significant response. Microbiome composition assessment by next-generation sequencing (NGS) revealed that no important changes correlated with phage treatment.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Terapia de Fagos/métodos , Fagos de Staphylococcus/inmunología , Administración Oral , Animales , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Ratones , Ratones Endogámicos C57BL , Staphylococcus aureus/virología
13.
Int J Radiat Biol ; 95(9): 1326-1336, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31170016

RESUMEN

Introduction: Near-infrared (NIR) and red-to-near-infrared (R/NIR) radiation are increasingly applied for therapeutic use. R/NIR-employing therapies aim to stimulate healing, prevent tissue necrosis, increase mitochondrial function, and improve blood flow and tissue oxygenation. The wide range of applications of this radiation raises questions concerning the effects of R/NIR on the immune system. Methods: In this review, we discuss the potential effects of exposure to R/NIR light on immune cells in the context of physical parameters of light. Discussion: The effects that R/NIR may induce in immune cells typically involve the production of reactive oxygen species (ROS), nitrogen oxide (NO), or interleukins. Production of ROS after exposure to R/NIR can either be inhibited or to some extent increased, which suggests that detailed conditions of experiments, such as the spectrum of radiation, irradiance, exposure time, determine the outcome of the treatment. However, a wide range of immune cell studies have demonstrated that exposure to R/NIR most often has an anti-inflammatory effect. Finally, photobiomodulation molecular mechanism with particular attention to the role of interfacial water structure changes for cell physiology and regulation of the inflammatory process was described. Conclusions: Optimization of light parameters allows R/NIR to act as an anti-inflammatory agent in a wide range of medical applications.


Asunto(s)
Inflamación/radioterapia , Rayos Infrarrojos/uso terapéutico , Animales , Sangre/efectos de la radiación , Granulocitos/efectos de la radiación , Humanos , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...