Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Worm ; 3: e29102, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-26442197

RESUMEN

Stress is a significant life event. The immediate response to stress is critical for survival. In organisms ranging from the unicellular Saccharomyces cerevisiae to protozoa (Trypanosoma brucei) and metazoan (such as Caenorhabditis elegans, Homo sapiens) stress response leads to the formation of cytoplasmic RNA-protein complexes referred to as stress granules (SGs). SGs regulate cell survival during stress by the sequestration of the signaling molecules implicated in apoptosis. They are a transient place of messenger ribonucleoproteins (mRNPs) remodeling for storage, degradation, or reinitiation of translation during stress and recovery from stress. Recently, we have identified chromatin factor, the sirtuin C. elegans SIR-2.4 variant and its mammalian homolog SIRT6 as a regulator of SGs formation. SIRT6 is highly conserved NAD(+)-dependent lysine deacetylase and ADP-ribosyltransferase impacting longevity, metabolism, and cancer. We observed that the cellular formation of SGs by SIRT6 or SIR-2.4 was linked with the cell viability or C. elegans survival and was dependent on SIRT6 enzymatic activity. Here, we discuss how SIR-2.4/SIRT6 influences SGs formation and stress response. We suggest possible mechanisms for such an unanticipated function of a chromatin regulatory factor SIRT6 in assembly of stress granules and cellular stress resistance.

2.
J Cell Sci ; 126(Pt 22): 5166-77, 2013 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24013546

RESUMEN

SIRT6 is a NAD(+)-dependent deacetylase that modulates chromatin structure and safeguards genomic stability. Until now, SIRT6 has been assigned to the nucleus and only nuclear targets of SIRT6 are known. Here, we demonstrate that in response to stress, C. elegans SIR-2.4 and its mammalian orthologue SIRT6 localize to cytoplasmic stress granules, interact with various stress granule components and induce their assembly. Loss of SIRT6 or inhibition of its catalytic activity in mouse embryonic fibroblasts impairs stress granule formation and delays disassembly during recovery, whereas deficiency of SIR-2.4 diminishes maintenance of P granules and decreases survival of C. elegans under stress conditions. Our findings uncover a novel, evolutionary conserved function of SIRT6 in the maintenance of stress granules in response to stress.


Asunto(s)
Cromatina/genética , Gránulos Citoplasmáticos/genética , Sirtuinas/genética , Estrés Fisiológico/genética , Animales , Caenorhabditis elegans , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica , Inestabilidad Genómica , Mamíferos , Ratones , Sirtuinas/metabolismo
3.
Worm ; 2(2): e23703, 2013 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24058872

RESUMEN

The highly conserved Hox transcription factors define positional identity along the anterior-posterior body axis during development. Inappropriate expression of Hox genes causes homeotic transformation, which leads to abnormal development of a specific region or segment. C. elegans offers an excellent model for studying factors required for the establishment of the spatially-restricted expression of Hox genes. We have recently identified chromatin factors, including a linker histone (H1) variant, HIS-24 and heterochromatin protein 1 (HP1) homolog, HPL-2, which contribute to the regulation of specific Hox gene expression through their binding to the repressive mark, H3K27me3. Furthermore, HIS-24 and HPL-2 act in a parallel pathway as members of the evolutionally conserved Polycomb group (PcG) silencing complex, MES-2/3/6. By microarray analysis, we found that HIS-24 and HPL-2 are not global transcriptional repressors as suggested by early studies, but rather are fine tuners of selected genes. Here, we discuss how HIS-24 and HPL-2 are responsible for the repression of specific genes in C. elegans. We suggest possible mechanisms for such an unanticipated function of an individual H1 variant and HP1 in the transcriptional repression of Hox genes.

4.
Mitochondrion ; 13(6): 705-20, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23438705

RESUMEN

The biological and enzymatic function of SIRT4 is largely uncharacterized. We show that the Caenorhabditis elegans SIR-2.2 and SIR-2.3 orthologs of SIRT4 are ubiquitously expressed, also localize to mitochondria and function during oxidative stress. Further, we identified conserved interaction with mitochondrial biotin-dependent carboxylases (PC, PCC, MCCC), key enzymes in anaplerosis and ketone body formation. The carboxylases were found acetylated on multiple lysine residues and detailed analysis of mPC suggested that one of these residues, K748ac, might regulate enzymatic activity. Nevertheless, no changes in mPC acetylation levels and enzymatic activity could be detected upon overexpression or loss of functional SIRT4.


Asunto(s)
Biotina/metabolismo , Caenorhabditis elegans/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Piruvato Carboxilasa/metabolismo , Sirtuinas/metabolismo , Acetilación , Animales , Animales Modificados Genéticamente , Cromatografía Liquida , Células HEK293 , Humanos , Mitocondrias/enzimología , Estrés Oxidativo , Interferencia de ARN , Espectrometría de Masas en Tándem
5.
PLoS Genet ; 8(9): e1002940, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23028351

RESUMEN

Elucidation of the biological role of linker histone (H1) and heterochromatin protein 1 (HP1) in mammals has been difficult owing to the existence of a least 11 distinct H1 and three HP1 subtypes in mice. Caenorhabditis elegans possesses two HP1 homologues (HPL-1 and HPL-2) and eight H1 variants. Remarkably, one of eight H1 variants, HIS-24, is important for C. elegans development. Therefore we decided to analyse in parallel the transcriptional profiles of HIS-24, HPL-1/-2 deficient animals, and their phenotype, since hpl-1, hpl-2, and his-24 deficient nematodes are viable. Global transcriptional analysis of the double and triple mutants revealed that HPL proteins and HIS-24 play gene-specific roles, rather than a general repressive function. We showed that HIS-24 acts synergistically with HPL to allow normal reproduction, somatic gonad development, and vulval cell fate decision. Furthermore, the hpl-2; his-24 double mutant animals displayed abnormal development of the male tail and ectopic expression of C. elegans HOM-C/Hox genes (egl-5 and mab-5), which are involved in the developmental patterning of male mating structures. We found that HPL-2 and the methylated form of HIS-24 specifically interact with the histone H3 K27 region in the trimethylated state, and HIS-24 associates with the egl-5 and mab-5 genes. Our results establish the interplay between HPL-1/-2 and HIS-24 proteins in the regulation of positional identity in C. elegans males.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans/crecimiento & desarrollo , Proteínas Cromosómicas no Histona , Histonas/genética , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Cromosómicas no Histona/deficiencia , Proteínas Cromosómicas no Histona/genética , Femenino , Regulación del Desarrollo de la Expresión Génica , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/deficiencia , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Masculino , Metilación , Mutación , Cola (estructura animal)/crecimiento & desarrollo , Factores de Transcripción/metabolismo , Vulva/citología , Vulva/crecimiento & desarrollo
6.
Mol Cell Biol ; 32(2): 251-65, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22083954

RESUMEN

Linker histone (H1) and heterochromatin protein 1 (HP1) are essential components of heterochromatin which contribute to the transcriptional repression of genes. It has been shown that the methylation mark of vertebrate histone H1 is specifically recognized by the chromodomain of HP1. However, the exact biological role of linker histone binding to HP1 has not been determined. Here, we investigate the function of the Caenorhabditis elegans H1 variant HIS-24 and the HP1-like proteins HPL-1 and HPL-2 in the cooperative transcriptional regulation of immune-relevant genes. We provide the first evidence that HPL-1 interacts with HIS-24 monomethylated at lysine 14 (HIS-24K14me1) and associates in vivo with promoters of genes involved in antimicrobial response. We also report an increase in overall cellular levels and alterations in the distribution of HIS-24K14me1 after infection with pathogenic bacteria. HIS-24K14me1 localization changes from being mostly nuclear to both nuclear and cytoplasmic in the intestinal cells of infected animals. Our results highlight an antimicrobial role of HIS-24K14me1 and suggest a functional link between epigenetic regulation by an HP1/H1 complex and the innate immune system in C. elegans.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/inmunología , Proteínas Cromosómicas no Histona/metabolismo , Regulación de la Expresión Génica , Histonas/metabolismo , Inmunidad Innata , Animales , Bacillus thuringiensis/fisiología , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/microbiología , Proteínas de Caenorhabditis elegans/genética , Proteínas Cromosómicas no Histona/genética , Histonas/genética , Interacciones Huésped-Patógeno , Regiones Promotoras Genéticas , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Activación Transcripcional
7.
Genesis ; 49(8): 647-61, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21538806

RESUMEN

Epigenetics is defined as the study of heritable changes in gene expression that are not accompanied by changes in the DNA sequence. Epigenetic mechanisms include histone post-translational modifications, histone variant incorporation, non-coding RNAs, and nucleosome remodeling and exchange. In addition, the functional compartmentalization of the nucleus also contributes to epigenetic regulation of gene expression. Studies on the molecular mechanisms underlying epigenetic phenomena and their biological function have relied on various model systems, including yeast, plants, flies, and cultured mammalian cells. Here we will expose the reader to the current understanding of epigenetic regulation in the roundworm C. elegans. We will review recent models of nuclear organization and its impact on gene expression, the biological role of enzymes modifying core histones, and the function of chromatin-associated factors, with special emphasis on Polycomb (PcG) and Trithorax (Trx-G) group proteins. We will discuss how the C. elegans model has provided novel insight into mechanisms of epigenetic regulation as well as suggest directions for future research.


Asunto(s)
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Epigenómica , Animales , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Histonas/metabolismo , Metilación , Modelos Biológicos , Oxidorreductasas N-Desmetilantes/genética , Oxidorreductasas N-Desmetilantes/metabolismo
8.
Epigenetics ; 4(6): 353-6, 2009 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-19736527

RESUMEN

Maintenance of intact heterochromatin structure through epigenetic mechanisms is essential for cell survival. Defects in heterochromatin formation caused by loss of chromatin-modifying enzymes lead to genomic instability and cellular senescence. The NAD(+)-dependent histone deacetylase SIR-2 and the H1 linker histone are intriguing chromatin elements that are connected to chromatin regulation and cell viability in the single cellular eukaryotic organism yeast. However, it remains an open question how SIR-2 and H1 mediate heterochromatin formation in simple multi-cellular organisms such as C. elegans and in even more complex organisms such as mammals. Recently we have identified SIR-2.1 and the H1 histone subtype, HIS-24 as factors involved in heterochromatin regulation at subtelomeric regions in C. elegans. In addition we show that SIR-2.1, HIS-24 and MES-2, a ortholog to Enhancer of zeste E(Z) are functionally related in heterochromatin formation contributing to fertility and embryogenesis. Here we discuss the interplay between SIR-2, H1 histone and histone methyltransferases in modulation of chromatin structure in further detail.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/enzimología , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/metabolismo , Sirtuinas/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Epigénesis Genética , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/fisiología , Metilación , Modelos Genéticos , Sirtuinas/fisiología
9.
J Proteome Res ; 8(8): 4039-49, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19530675

RESUMEN

In eukaryotic species, signal transduction is often mediated by posttranslational modifications that can serve as regulatory switches. Although nematodes have usually been studied by genetic rather than biochemical methods, PTMs such as phosphorylation are thought to control all aspects of biological functions including sex determination and development. Here, we apply high accuracy mass spectrometry and comprehensive bioinformatic analysis to determine and characterize the in vivo Caenorhabditis elegans phosphoproteome for the first time. We detect nearly 7000 phosphorylation sites on 2400 proteins, which are disproportionately involved in development and sex determination. Interestingly, the worm phosphoproteome turns out to be very distinct from phosphoproteomes of other multicellular eukaryotes as judged by its phylogenetic conservation, kinase substrate motifs and site analysis by a support vector machine. This result agrees with the large proportion of worm specific kinases previously discovered by genome sequencing. Furthermore, our data show that the C. elegans specific dosage complex can be phosphorylated on most subunits, suggesting its regulation by kinases. Availability of the C. elegans phosphoproteome should add a novel dimension to functional data obtained by genetic screens in this organism.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , Proteómica/métodos , Adenosina Trifosfatasas , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Análisis por Conglomerados , Secuencia Conservada , Proteínas de Unión al ADN , Bases de Datos Genéticas , Complejos Multiproteicos , Fosfoproteínas/genética , Fosforilación , Fosfoserina , Fosfotreonina , Fosfotransferasas , Filogenia , Proteoma/genética , Procesos de Determinación del Sexo
10.
Mol Cell Biol ; 29(13): 3700-9, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19380489

RESUMEN

HIS-24 linker histone and SIR-2.1 deacetylase are involved in chromatin silencing in Caenorhabditis elegans. Depletion of SIR-2.1 results in cytoplasmic retention of HIS-24 in oocytes. However, the molecular working mechanisms of HIS-24 and SIR-2.1 are unclear. We show here a synergistic function of SIR-2.1 and HIS-24 that are together essential for maintenance of the H3K27me3 mark in the germ line of C. elegans. We demonstrate the synthetic effects of the two factors on brood size, embryogenesis, and fertility. SIR-2.1 and HIS-24 associate with the subtelomeric regions but apparently do not interact directly. We report that SIR-2.1 deacetylates H3K9 at subtelomeric regions and suggest that deacetylation of H3K9 is a prerequisite for H3K27 methylation. In turn, we found that HIS-24 specifically interacts with the histone H3 K27 region, when unmodified or in the trimethylated state. Overall, our data indicate that SIR-2.1 and HIS-24 contribute to the propagation of a specialized chromatin state at the subtelomeric regions and elsewhere in the genome.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Células Germinativas/fisiología , Histonas/metabolismo , Sirtuinas/metabolismo , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Línea Celular , Células Germinativas/citología , Histonas/genética , Humanos , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Sirtuinas/genética , Telómero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...