Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38731994

RESUMEN

The mechanism of ethylene (ET)-regulated salinity stress response remains largely unexplained, especially for semi-halophytes and halophytes. Here, we present the results of the multifaceted analysis of the model semi-halophyte Mesembryanthemum crystallinum L. (common ice plant) ET biosynthesis pathway key components' response to prolonged (14 days) salinity stress. Transcriptomic analysis revealed that the expression of 3280 ice plant genes was altered during 14-day long salinity (0.4 M NaCl) stress. A thorough analysis of differentially expressed genes (DEGs) showed that the expression of genes involved in ET biosynthesis and perception (ET receptors), the abscisic acid (ABA) catabolic process, and photosynthetic apparatus was significantly modified with prolonged stressor presence. To some point this result was supported with the expression analysis of the transcript amount (qPCR) of key ET biosynthesis pathway genes, namely ACS6 (1-aminocyclopropane-1-carboxylate synthase) and ACO1 (1-aminocyclopropane-1-carboxylate oxidase) orthologs. However, the pronounced circadian rhythm observed in the expression of both genes in unaffected (control) plants was distorted and an evident downregulation of both orthologs' was induced with prolonged salinity stress. The UPLC-MS analysis of the ET biosynthesis pathway rate-limiting semi-product, namely of 1-aminocyclopropane-1-carboxylic acid (ACC) content, confirmed the results assessed with molecular tools. The circadian rhythm of the ACC production of NaCl-treated semi-halophytes remained largely unaffected by the prolonged salinity stress episode. We speculate that the obtained results represent an image of the steady state established over the past 14 days, while during the first hours of the salinity stress response, the view could be completely different.


Asunto(s)
Etilenos , Regulación de la Expresión Génica de las Plantas , Estrés Salino , Plantas Tolerantes a la Sal , Etilenos/biosíntesis , Etilenos/metabolismo , Plantas Tolerantes a la Sal/genética , Plantas Tolerantes a la Sal/metabolismo , Mesembryanthemum/metabolismo , Mesembryanthemum/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vías Biosintéticas , Perfilación de la Expresión Génica/métodos , Ácido Abscísico/metabolismo , Salinidad , Transcriptoma
2.
Microb Ecol ; 87(1): 50, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466433

RESUMEN

Intensive crop production leads to the disruption of the symbiosis between plants and their associated microorganisms, resulting in suboptimal plant productivity and lower yield quality. Therefore, it is necessary to improve existing methods and explore modern, environmentally friendly approaches to crop production. One of these methods is biotization, which involves the inoculation of plants with appropriately selected symbiotic microorganisms which play a beneficial role in plant adaptation to the environment. In this study, we tested the possibility of using a multi-microorganismal inoculum composed of arbuscular mycorrhizal fungi (AMF) and AMF spore-associated bacteria for biotization of the red raspberry. Bacteria were isolated from the spores of AMF, and their plant growth-promoting properties were tested. AMF inocula were supplemented with selected bacterial strains to investigate their effect on the growth and vitality of the raspberry. The investigations were carried out in the laboratory and on a semi-industrial scale in a polytunnel where commercial production of seedlings is carried out. In the semi-industrial experiment, we tested the growth parameters of plants and physiological response of the plant to temporary water shortage. We isolated over fifty strains of bacteria associated with spores of AMF. Only part of them showed plant growth-promoting properties, and six of these (belonging to the Paenibacillus genus) were used for the inoculum. AMF inoculation and co-inoculation of AMF and bacteria isolated from AMF spores improved plant growth and vitality in both experimental setups. Plant dry weight was improved by 70%, and selected chlorophyll fluorescence parameters (the contribution of light to primary photochemistry and fraction of reaction centre chlorophyll per chlorophyll of the antennae) were increased. The inoculum improved carbon assimilation, photosynthetic rate, stomatal conductance and transpiration after temporary water shortage. Raspberry biotization with AMF and bacteria associated with spores has potential applications in horticulture where ecological methods based on plant microorganism interaction are in demand.


Asunto(s)
Micorrizas , Rubus , Micorrizas/fisiología , Esporas Fúngicas , Plantas/microbiología , Bacterias , Clorofila , Agua
3.
Environ Microbiol ; 25(12): 2913-2930, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37127295

RESUMEN

Microorganisms play a key role in plant adaptation to the environment. The aim of this study was to evaluate the effect of toxic metals present in the soil on the biodiversity of plant-related, endophytic mycobiota. The mycobiome of plants and soil from a Zn-Pb heap and a metal-free ruderal area were compared via Illumina sequencing of the ITS1 rDNA. The biodiversity of plants and fungi inhabiting mine dump substrate was lower than that of the metal free site. In the endosphere of Arabidopsis arenosa from the mine dump the number of endophytic fungal taxa was comparable to that in the reference population, but the community structure significantly differed. Agaricomycetes was the most notably limited class of fungi. The results of plant mycobiota evaluation from the field study were verified in terms of the role of toxic metals in plant endophytic fungi community assembly in a reconstruction experiment. The results presented in this study indicate that metal toxicity affects the structure of the plant mycobiota not by changing the pool of microorganisms available in the soil from which the fungal symbionts are recruited but most likely by altering plant and fungi behaviour and the organisms' preferences towards associating in symbiotic relationships.


Asunto(s)
Arabidopsis , Micobioma , Metales , Hongos , Arabidopsis/microbiología , Suelo , Microbiología del Suelo
4.
Sci Total Environ ; 870: 161887, 2023 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-36731550

RESUMEN

The endophytic Basidiomycete Sporobolomyces ruberrimus protects its host Arabidopsis arenosa against metal toxicity. Plants inoculated with the fungus yielded more biomass and exhibited significantly fewer stress symptoms in medium mimicking mine dump conditions (medium supplemented with excess of Fe, Zn and Cd). Aside from fine-tuning plant metal homeostasis, the fungus was capable of precipitating Fe in the medium, most likely limiting host exposure to metal toxicity. The precipitated residue was identified by Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), X-Ray Diffraction (XRD) and electron microscopy (SEM/TEM) with energy dispersive X-Ray analysis (EDX/SAED) techniques. The performed analyses revealed that the fungus transforms iron into amorphous (oxy)hydroxides and phosphates and immobilizes them in the form of a precipitate changing Fe behaviour in the MSR medium. Moreover, the complexation of free Fe ions by fungi could be obtained by biomolecules such as lipids, proteins, or biosynthesized redox-active molecules.


Asunto(s)
Arabidopsis , Basidiomycota , Hierro/toxicidad , Hierro/química , Metales , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X
5.
Appl Microbiol Biotechnol ; 106(12): 4775-4786, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35729273

RESUMEN

Ecological methods are becoming increasingly popular. One of these methods is plant biotization. In our paper, we focus on selection of Vaccinium corymbosum hairy root-inhabiting fungi for plant growth promotion in a single microorganism inoculation setup and then composed a multiorganismal inoculum enriched with a representative of another group of fungi, leaf endophytes. The hairy roots of V. corymbosum hosted 13 fungal taxa. In single inoculation of the plant with fungal strains, the most beneficial for plant growth were Oidiodendron maius and Phialocephala fortinii. Additional inoculation of the plants with three root symbiotic fungi (O. maius, Hymenoscyphus sp. and P. fortinii) and with the endophytic fungus Xylaria sp. increased plant height in laboratory experiments. On a semi-industrial scale, inoculation improved plant biomass and vitality. Therefore, the amendment of root-associated fungal communities with a mixture of ericoid mycorrhizal and endophytic fungi may represent an alternative to conventional fertilization and pesticide application in large-scale blueberry production. KEY POINTS: • O. maius and P. fortinii significantly stimulated V. corymbosum growth in a single inoculation. • Multimicroorganismal inoculum increased plant biomass and vitality. • Blueberry biotization with ericoid and endophytic fungi is recommended.


Asunto(s)
Arándanos Azules (Planta) , Micorrizas , Arándanos Azules (Planta)/microbiología , Endófitos , Hongos/genética , Raíces de Plantas/microbiología , Plantas , Simbiosis
6.
Int J Biol Macromol ; 213: 738-750, 2022 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-35690157

RESUMEN

In this work, platinum nanoparticles (PtNPs) were synthesized by a modified polyol process using TEMPO-oxidized nanocellulose (TOCN) as a stabilizing and co-reducing agent. Different ratios of TOCN nanocellulose to Pt4+ ions were studied to establish the optimum stabilizing effect of PtNPs. The effect of different pH of aqueous TOCN suspensions on the morphology of PtNPs was also examined. It was proved that PtNPs can be obtained solely in the presence of TOCN without the use of an additional reducing agent or ethylene glycol. The morphology and structural properties of the nanocellulose­platinum nanoparticles composites were assessed using spectroscopic, microscopic and diffraction techniques, The catalytic performance in 4-nitrophenol reduction was evaluated. Significant differences in reaction rate constants k were found depending on the pH of the TOCN suspension applied during Pt4+ reduction. The crucial effect of reaction conditions on PtNPs performance was confirmed in tests of antibacterial efficacy against E. coli.


Asunto(s)
Celulosa Oxidada , Nanopartículas del Metal , Antibacterianos/farmacología , Celulosa Oxidada/química , Óxidos N-Cíclicos , Escherichia coli , Nanopartículas del Metal/química , Platino (Metal)/química , Sustancias Reductoras
7.
Sci Total Environ ; 789: 147950, 2021 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-34082195

RESUMEN

To improve the efficiency of Ni phytoextraction, the metal hyperaccumulator N. goesingensis was subject to treatment with a combination of a Ni uptake stimulating microorganism and the commercially available, IAA- based biostimulating seaweed extract - Kelpak. Additionally, we compared the plant growth promoting and Ni uptake capabilities of the two biofertilizers. Treatment with the Kelpak alone had no significant effect on plant growth or Ni accumulation. Inoculation of N. goesingensis with Phomopsis columnaris significantly improved the biomass of the hyperaccumulating plant and Ni yield per plant and improved several plant biometric features such as fresh and dry weight and several others related to leaf and root size. However, the combination of the two treatments yielded the best results; plants treated with the two growth promoting agents yielded 85% more biomass compared to not treated plants and accumulated 48% more Ni per plant. To verify plant inoculation with the fungus we generated a GFP expressing strain of P. columnaris and visualized the fungus in both plant leaves and roots. To trace the development of the fungus in planta and to evaluate the effect of biostimulant treatment on mycelium development fungal translational elongation factor 1α (tef1α) DNA was quantified with qPCR. Upon biofertilizer the abundance P. columnaris in plant leaves increased nearly 5-fold. The utilization of plant growth stimulating microorganisms, endophytic fungi in particular, can significantly improve Ni phytoextraction in hyperaccumulator N. goesingensis.


Asunto(s)
Reguladores del Crecimiento de las Plantas , Contaminantes del Suelo , Biodegradación Ambiental , Hongos , Desarrollo de la Planta , Raíces de Plantas/química , Contaminantes del Suelo/análisis
8.
Sci Total Environ ; 768: 144666, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33736318

RESUMEN

The role of endophytic fungi isolated from different populations of European Ni hyperaccumulators was investigated in regard to the microorganisms' ability to enhance the hyperaccumulation of Ni in Noccaea caerulescens. Effects of particular species of endophytic fungi on adaptation of N. caerulescens to excess Ni were tested by co-cultivation with single strains of the fungi. Seven of these had a positive effect on plant biomass production, whereas two of the tested species inhibited plant growth; biomass production of inoculated plants was significantly different compared to non-inoculated control. Inoculation with six fungal strains: Embellisia thlaspis, Pyrenochaeta cava, Phomopsis columnaris, Plectosphaerella cucumerina, Cladosporium cladosporioides and Alternaria sp. stimulated the plant to uptake and accumulate more Ni in both roots and shoots, compared to non-inoculated control. P. columnaris was isolated from all plant species sampled. Strains isolated from Noccaea caerulescens and Noccaea goesingensis increased Ni root and shoot accumulation of their native hosts (compared to non-inoculated control). Inoculation of different populations of Noccaea with P. columnaris of foreign origin did not cause its host to accumulate more Ni, with the exception of the Ni-unadapted ecotype of N. goesingensis. Inoculation with P. columnaris from N. caerulescens significantly improved Ni uptake, but the effect of the fungus was not as prominent as in the case of N. caerulescens. By comparing the transcriptomes of N. caerulescens and N. goesingensis from Flatz inoculated with P. columnaris, we showed that enhanced uptake and accumulation of Ni in the plants is accompanied by an upregulation of several genes mainly involved in plant stress protection and metal uptake and compartmentation.


Asunto(s)
Brassicaceae , Níquel , Ascomicetos , Cladosporium , Hongos
9.
Int J Mol Sci ; 22(2)2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33445673

RESUMEN

Grass pea (Lathyrus sativus) is a leguminous plant of outstanding tolerance to abiotic stress. The aim of the presented study was to describe the mechanism of grass pea (Lathyrus sativus L.) photosynthetic apparatus acclimatisation strategies to salinity stress. The seedlings were cultivated in a hydroponic system in media containing various concentrations of NaCl (0, 50, and 100 mM), imitating none, moderate, and severe salinity, respectively, for three weeks. In order to characterise the function and structure of the photosynthetic apparatus, Chl a fluorescence, gas exchange measurements, proteome analysis, and Fourier-transform infrared spectroscopy (FT-IR) analysis were done inter alia. Significant differences in the response of the leaf and stem photosynthetic apparatus to severe salt stress were observed. Leaves became the place of harmful ion (Na+) accumulation, and the efficiency of their carboxylation decreased sharply. In turn, in stems, the reconstruction of the photosynthetic apparatus (antenna and photosystem complexes) activated alternative electron transport pathways, leading to effective ATP synthesis, which is required for the efficient translocation of Na+ to leaves. These changes enabled efficient stem carboxylation and made them the main source of assimilates. The observed changes indicate the high plasticity of grass pea photosynthetic apparatus, providing an effective mechanism of tolerance to salinity stress.


Asunto(s)
Aclimatación , Lathyrus/fisiología , Fotosíntesis , Tallos de la Planta/fisiología , Salinidad , Desarrollo de la Planta , Estrés Salino , Plantones/fisiología , Estrés Fisiológico
10.
Plants (Basel) ; 9(4)2020 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-32283631

RESUMEN

Many areas intended for crop production suffer from the concomitant occurrence of heavy metal pollution and elevated salinity; therefore, halophytes seem to represent a promising perspective for the bioremediation of contaminated soils. In this study, the influence of Cd treatment (0.01-10.0 mM) and salinity stress (0.4 M NaCl) on the expression of genes involved in heavy metal uptake (irt2-iron-regulated protein 2, zip4-zinc-induced protein 4), vacuolar sequestration (abcc2-ATP-binding cassette 2, cax4-cation exchanger 2 pcs1-phytochelatin synthase 1) and translocation into aerial organs (hma4-heavy metal ATPase 4) were analyzed in a soil-grown semi-halophyte Mesembryanthemum crystallinum. The upregulation of irt2 expression induced by salinity was additionally enhanced by Cd treatment. Such changes were not observed for zip4. Stressor-induced alterations in abcc2, cax4, hma4 and pcs1 expression were most pronounced in the root tissue, and the expression of cax4, hma4 and pcs1 was upregulated in response to salinity and Cd. However, the cumulative effect of both stressors, similar to the one described for irt2, was observed only in the case of pcs1. The importance of salt stress in the irt2 expression regulation mechanism is proposed. To the best of our knowledge, this study is the first to report the combined effect of salinity and heavy metal stress on genes involved in heavy metal trafficking.

11.
Front Microbiol ; 9: 441, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29615990

RESUMEN

Over the last years the role of fungal endophytes in plant biology has been extensively studied. A number of species were shown to positively affect plant growth and fitness, thus attempts have been made to utilize these microorganisms in agriculture and phytoremediation. Plant-fungi symbiosis requires multiple metabolic adjustments of both of the interacting organisms. The mechanisms of these adaptations are mostly unknown, however, plant hormones seem to play a central role in this process. The plant hormone strigolactone (SL) was previously shown to activate hyphae branching of mycorrhizal fungi and to negatively affect pathogenic fungi growth. Its role in the plant-endophytic fungi interaction is unknown. The effect of the synthetic SL analog GR24 on the endophytic fungi Mucor sp. growth, respiration, H2O2 production and the activity of antioxidant enzymes was evaluated. We found fungi colony growth rate was decreased in a GR24 concentration dependent manner. Additionally, the fungi accumulated more H2O2 what was accompanied by an altered activity of antioxidant enzymes. Symbiosis with Mucor sp. positively affected Arabidopsis thaliana growth, but SL was necessary for the establishment of the beneficial interaction. A. thaliana biosynthesis mutants max1 and max4, but not the SL signaling mutant max2 did not develop the beneficial phenotype. The negative growth response was correlated with alterations in SA homeostasis and a significant upregulation of genes encoding selected plant defensins. The fungi were also shown to be able to decompose SL in planta and to downregulate the expression of SL biosynthesis genes. Additionally, we have shown that GR24 treatment with a dose of 1 µM activates the production of SA in A. thaliana. The results presented here provide evidence for a role of SL in the plant-endophyte cross-talk during the mutualistic interaction between Arabidopsis thaliana and Mucor sp.

12.
Nanomaterials (Basel) ; 8(1)2018 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-29301370

RESUMEN

Iron-substituted MFI, Y and USY zeolites prepared by two preparation routes-classical ion exchange and the ultrasound modified ion-exchange method-were characterised by micro-Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and ultraviolet (UV)/visible diffuse reflectance spectroscopy (UV/Vis DRS). Ultrasound irradiation, a new technique for the preparation of the metal salt suspension before incorporation to the zeolite structure, was employed. An experimental study of selective catalytic reduction (SCR) of NO with NH3 on both iron-substituted reference zeolite catalysts and those prepared through the application of ultrasound conducted during an ion-exchange process is presented. The prepared zeolite catalysts show high activity and selectivity in SCR deNOx abatement. The MFI-based iron catalysts, especially those prepared via the sonochemical method, revealed superior activity in the deNOx process, with almost 100% selectivity towards N2. The hydrothermal stability test confirmed high stability and activity of MFI-based catalysts in water-rich conditions during the deNOx reaction at 450 °C.

13.
Mycorrhiza ; 28(3): 235-246, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29359253

RESUMEN

Phytoremediation of polluted sites can be improved by co-inoculation with mycorrhizal and endophytic fungi. In this study, the effects of single- and co-inoculation of Lactuca serriola with an arbuscular mycorrhizal (AM) fungus, Rhizoglomus intraradices, and endophytic fungi, Mucor sp. or Trichoderma asperellum, on plant growth, vitality, toxic metal accumulation, sesquiterpene lactone production and flavonoid concentration in the presence of toxic metals were evaluated. Inoculation with the AM fungus increased biomass yield of the plants grown on non-polluted and polluted substrate. Co-inoculation with the AM fungus and Mucor sp. resulted in increased biomass yield of plants cultivated on the polluted substrate, whereas co-inoculation with T. asperellum and the AM fungus increased plant biomass on the non-polluted substrate. In the presence of Mucor sp., mycorrhizal colonization and arbuscule richness were increased in the non-polluted substrate. Co-inoculation with the AM fungus and Mucor sp. increased Zn concentration in leaves and roots. The concentration of sesquiterpene lactones in plant leaves was decreased by AM fungus inoculation in both substrates. Despite enhanced host plant costs caused by maintaining symbiosis with numerous microorganisms, interaction of wild lettuce with both mycorrhizal and endophytic fungi was more beneficial than that with a single fungus. The study shows the potential of double inoculation in unfavourable environments, including agricultural areas and toxic metal-polluted areas.


Asunto(s)
Biodegradación Ambiental/efectos de los fármacos , Endófitos/efectos de los fármacos , Lactuca/crecimiento & desarrollo , Lactuca/microbiología , Micorrizas/efectos de los fármacos , Contaminantes del Suelo/efectos adversos , Endófitos/fisiología , Glomeromycota/fisiología , Mucor/fisiología , Micorrizas/fisiología , Polonia , Trichoderma/fisiología
14.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 202-210, 2018 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-29136586

RESUMEN

The process of methane combustion over the surface of a catalyst is still not fully understood. The identification of the reaction path and the intermediates created during catalysis is crucial for understanding the transformation of methane molecules. Two-dimensional (2D) correlation spectroscopy was engaged as a tool for the quantitative analysis of a series of temperature-dependent infrared spectra registered in situ during methane combustion. The prepared samples of catalysts were based on a Co, Pd and Ce mixed oxide adsorbed on an aluminium oxide layer deposited on kanthal steel. The registered spectra were transformed into 2D synchronous and asynchronous contour maps. The sequential order of spectral intensity changes was determined, and the resolution enhancement of overlapping IR bands by 2D correlation was demonstrated. The changes in the bands' intensity and information about band position can be correlated with a specific bond, and thus, the possible process intermediates can be identified. The 2DCoS analysis proved to be a powerful tool for band enhancement and revealed the changes occurring within the analysed catalyst systems as responses to increased temperature.

15.
Nanomaterials (Basel) ; 7(9)2017 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-28846614

RESUMEN

A goal of our study was to find an alternative to nano-silver-based antimicrobial materials which would contain active silver immobilized in a solid matrix that prevents its migration into the surrounding environment. In this study, we investigated whether silver cations dispersed in an atomic form and trapped in an ion-exchanged zeolite show comparable antimicrobial activity to silver nanoparticles (NPs). The biocidal active material was prepared from the sodium form of faujasite type zeolite in two steps: (1) exchange with silver cations, (2) removal of the external silver oxide NPs by elution with Na2EDTA solution. The modified biocidal zeolite was then added to paper pulp to obtain sheets. The zeolite paper samples and reference samples containing silver NPs were tested in terms of biocidal activity against an array of fungi and bacteria strains, including Escherichia coli, Serratia marcescens, Bacillus subtilis, Bacillus megaterium, Trichoderma viride, Chaetomium globosum, Aspergillus niger, Cladosporium cladosporioides, and Mortierella alpina. The paper with the modified faujasite additive showed higher or similar antibacterial and antifungal activities towards the majority of tested microbes in comparison with the silver NP-filled paper. A reverse effect was observed for the Mortierella alpina strain.

16.
Nanomaterials (Basel) ; 7(7)2017 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-28686190

RESUMEN

The aim of this study was to obtain nanocrystalline mixed metal-oxide-ZrO2 catalysts via a sonochemically-induced preparation method. The effect of a stabiliser's addition on the catalyst parameters was investigated by several characterisation methods including X-ray Diffraction (XRD), nitrogen adsorption, X-ray fluorescence (XRF), scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectrometer (EDS), transmission electron microscopy (TEM) and µRaman. The sonochemical preparation method allowed us to manufacture the catalysts with uniformly dispersed metal-oxide nanoparticles at the support surface. The catalytic activity was tested in a methane combustion reaction. The activity of the catalysts prepared by the sonochemical method was higher than that of the reference catalysts prepared by the incipient wetness method without ultrasonic irradiation. The cobalt and chromium mixed zirconia catalysts revealed their high activities, which are comparable with those presented in the literature.

17.
Artículo en Inglés | MEDLINE | ID: mdl-28614750

RESUMEN

New catalytic systems are still in development to meet the challenge of regulations concerning the emission of volatile organic compounds (VOCs). This is because such compounds have a significant impact on air quality and some of them are toxic to the environment and human beings. The catalytic combustion process of VOCs over non-noble metal catalysts is of great interest to researchers. The high conversion parameters and cost effective preparation makes them a valuable alternative to monoliths and noble metal catalysts. In this study, the cobalt catalyst was prepared by non-equilibrium plasma deposition of organic precursor on calcined kanthal steel. Thus prepared, cobalt oxide based microstructural short-channel reactors were tested for n-nonane combustion and the catalyst surfaces were examined by in situ µ-Raman spectroscopy and in situ infrared spectroscopy. The spectra collected at various temperatures were used in generalised two-dimensional correlation analysis to establish the sequential order of spectral intensity changes and correlate the simultaneous changes in bands selectively coupled by different interaction mechanisms. The 2D synchronous and asynchronous contour maps were proved to be a valuable extension to the standard analysis of the temperature dependent 1D spectra.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...