Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Opin Insect Sci ; 54: 100968, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36113710

RESUMEN

Methods to acquire and process synaptic-resolution electron-microscopy datasets have progressed very rapidly, allowing production and annotation of larger, more complete connectomes. More accurate neuronal matching techniques are enriching cell type data with gene expression, neuron activity, behaviour and developmental information, providing ways to test hypotheses of circuit function. In a variety of behaviours such as learned and innate olfaction, navigation and sexual behaviour, connectomics has already revealed interconnected modules with a hierarchical structure, recurrence and integration of sensory streams. Comparing individual connectomes to determine which circuit features are robust and which are variable is one key research area; new work in comparative connectomics across development, experience, sex and species will establish strong links between neuronal connectivity and brain function.


Asunto(s)
Conectoma , Animales , Conectoma/métodos , Sistema Nervioso , Neuronas/fisiología , Olfato
2.
Elife ; 102021 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-34755599

RESUMEN

Animal behavior is shaped both by evolution and by individual experience. Parallel brain pathways encode innate and learned valences of cues, but the way in which they are integrated during action-selection is not well understood. We used electron microscopy to comprehensively map with synaptic resolution all neurons downstream of all mushroom body (MB) output neurons (encoding learned valences) and characterized their patterns of interaction with lateral horn (LH) neurons (encoding innate valences) in Drosophila larva. The connectome revealed multiple convergence neuron types that receive convergent MB and LH inputs. A subset of these receives excitatory input from positive-valence MB and LH pathways and inhibitory input from negative-valence MB pathways. We confirmed functional connectivity from LH and MB pathways and behavioral roles of two of these neurons. These neurons encode integrated odor value and bidirectionally regulate turning. Based on this, we speculate that learning could potentially skew the balance of excitation and inhibition onto these neurons and thereby modulate turning. Together, our study provides insights into the circuits that integrate learned and innate valences to modify behavior.


Asunto(s)
Drosophila melanogaster/fisiología , Cuerpos Pedunculados/fisiología , Neuronas/fisiología , Animales , Encéfalo/fisiología , Conectoma , Drosophila melanogaster/crecimiento & desarrollo , Larva/crecimiento & desarrollo , Larva/fisiología , Aprendizaje/fisiología
3.
Elife ; 92020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33315010

RESUMEN

Making inferences about the computations performed by neuronal circuits from synapse-level connectivity maps is an emerging opportunity in neuroscience. The mushroom body (MB) is well positioned for developing and testing such an approach due to its conserved neuronal architecture, recently completed dense connectome, and extensive prior experimental studies of its roles in learning, memory, and activity regulation. Here, we identify new components of the MB circuit in Drosophila, including extensive visual input and MB output neurons (MBONs) with direct connections to descending neurons. We find unexpected structure in sensory inputs, in the transfer of information about different sensory modalities to MBONs, and in the modulation of that transfer by dopaminergic neurons (DANs). We provide insights into the circuitry used to integrate MB outputs, connectivity between the MB and the central complex and inputs to DANs, including feedback from MBONs. Our results provide a foundation for further theoretical and experimental work.


Asunto(s)
Conectoma , Drosophila melanogaster/fisiología , Cuerpos Pedunculados/fisiología , Animales , Mapeo Encefálico , Cuerpos Pedunculados/inervación
4.
Elife ; 92020 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-32286229

RESUMEN

To analyse neuron data at scale, neuroscientists expend substantial effort reading documentation, installing dependencies and moving between analysis and visualisation environments. To facilitate this, we have developed a suite of interoperable open-source R packages called the natverse. The natverse allows users to read local and remote data, perform popular analyses including visualisation and clustering and graph-theoretic analysis of neuronal branching. Unlike most tools, the natverse enables comparison across many neurons of morphology and connectivity after imaging or co-registration within a common template space. The natverse also enables transformations between different template spaces and imaging modalities. We demonstrate tools that integrate the vast majority of Drosophila neuroanatomical light microscopy and electron microscopy connectomic datasets. The natverse is an easy-to-use environment for neuroscientists to solve complex, large-scale analysis challenges as well as an open platform to create new code and packages to share with the community.


Asunto(s)
Conectoma/métodos , Interpretación de Imagen Asistida por Computador/métodos , Neuroanatomía/métodos , Programas Informáticos , Animales , Drosophila , Humanos , Neuronas/fisiología
5.
Elife ; 82019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31112130

RESUMEN

Animals exhibit innate behaviours to a variety of sensory stimuli including olfactory cues. In Drosophila, one higher olfactory centre, the lateral horn (LH), is implicated in innate behaviour. However, our structural and functional understanding of the LH is scant, in large part due to a lack of sparse neurogenetic tools for this region. We generate a collection of split-GAL4 driver lines providing genetic access to 82 LH cell types. We use these to create an anatomical and neurotransmitter map of the LH and link this to EM connectomics data. We find ~30% of LH projections converge with outputs from the mushroom body, site of olfactory learning and memory. Using optogenetic activation, we identify LH cell types that drive changes in valence behavior or specific locomotor programs. In summary, we have generated a resource for manipulating and mapping LH neurons, providing new insights into the circuit basis of innate and learned olfactory behavior.


Asunto(s)
Conducta Animal , Drosophila/anatomía & histología , Drosophila/fisiología , Cuerpos Pedunculados/anatomía & histología , Cuerpos Pedunculados/fisiología , Corteza Olfatoria/anatomía & histología , Corteza Olfatoria/fisiología , Animales , Conectoma , Vías Nerviosas/anatomía & histología , Vías Nerviosas/fisiología , Optogenética
6.
Curr Opin Neurobiol ; 56: 125-134, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30703584

RESUMEN

At around 150 000 neurons, the adult Drosophila melanogaster central nervous system is one of the largest species, for which a complete cellular catalogue is imminent. While numerically much simpler than mammalian brains, its complexity is still difficult to parse without grouping neurons into consistent types, which can number 1-1000 cells per hemisphere. We review how neuroanatomical and gene expression data are being used to discover neuronal types at scale. The correlation among multiple co-varying neuronal properties, including lineage, gene expression, morphology, connectivity, response properties and shared behavioral significance is essential to the definition of neuronal cell type. Initial studies comparing morphological and transcriptomic definitions of neuronal type suggest that these are highly consistent, but there is much to do to match these approaches brain-wide. Matched single-cell transcriptomic and morphological data provide an effective reference point to integrate other data types, including connectomics data. This will significantly enhance our ability to make functional predictions from brain wiring diagrams as well facilitating molecular genetic manipulation of neuronal types.


Asunto(s)
Conectoma , Neuronas , Animales , Encéfalo , Drosophila melanogaster , Genómica
7.
Curr Opin Insect Sci ; 24: 96-105, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29208230

RESUMEN

Parallels between invertebrates and vertebrates in nervous system development, organisation and circuits are powerful reasons to use insects to study the mechanistic basis of behaviour. The last few years have seen the generation in Drosophila melanogaster of very large light microscopy data sets, genetic driver lines and tools to report or manipulate neural activity. These resources in conjunction with computational tools are enabling large scale characterisation of neuronal types and their functional properties. These are complemented by 3D electron microscopy, providing synaptic resolution data. A whole brain connectome of the fly larva is approaching completion based on manual reconstruction of electron-microscopy data. An adult whole brain dataset is already publicly available and focussed reconstruction is under way, but its 40× greater volume would require ∼500-5000 person-years of manual labour. Nevertheless rapid technical improvements in imaging and especially automated segmentation will likely deliver a complete adult connectome in the next 5 years. To enhance our understanding of the circuit basis of behaviour, light and electron microscopy outputs must be integrated with functional and physiological information into comprehensive databases. We review presently available data, tools and opportunities in Drosophila. We then consider the limits and potential of future progress and how this may impact neuroscience in rich model systems provided by larger insects and vertebrates.


Asunto(s)
Conectoma , Drosophila melanogaster/anatomía & histología , Drosophila melanogaster/fisiología , Animales , Encéfalo/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Larva/anatomía & histología , Larva/crecimiento & desarrollo , Larva/fisiología , Neuronas/fisiología , Neurociencias
8.
Curr Opin Neurobiol ; 34: 149-57, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26143522

RESUMEN

Understanding how sensory stimuli are processed in the brain to instruct appropriate behavior is a fundamental question in neuroscience. Drosophila has become a powerful model system to address this problem. Recent advances in characterizing the circuits underlying pheromone processing have put the field in a position to follow the transformation of these chemical signals all the way from the sensory periphery to decision making and motor output. Here we describe the latest advances, outline emerging principles of pheromone processing and discuss future questions.


Asunto(s)
Encéfalo/metabolismo , Drosophila/fisiología , Feromonas/metabolismo , Caracteres Sexuales , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...