Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
ACS ES T Water ; 4(9): 3904-3917, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39296623

RESUMEN

Suspended sediment is a critical water quality parameter and an indicator of geomorphic processes, but suspended sediment dynamics in urban streams may not conform to the first-flush model widely used for other pollutants. We analyzed discharge and turbidity data for 367 events from three urban watersheds (impervious cover 16-45%) in Cleveland, Ohio (USA). Less intensely urbanized watersheds exhibit higher turbidity compared to that of the most highly urbanized watershed. Proportionally, more counterclockwise hysteresis is observed in the two less urbanized watersheds, and more clockwise hysteresis occurs in the highly urbanized watershed. However, hysteresis patterns are driven by different mechanisms in each watershed, and geomorphic analysis was critical to identifying the underlying mechanisms. In the least urbanized watershed, spatial rainfall variability controls sediment hysteresis. In the intermediate watershed, the erosion of upstream weathered shale banks during dry periods plays a significant role in the sediment supply and shaping hysteresis. In the most urbanized watershed, high eroding banks in downstream reaches lead to more frequent clockwise hysteresis. Overall, we suggest that as the impervious surfaces increase, the availability of instream sediments (bed and banks) plays an increased role in suspended sediment dynamics, and geomorphology remains essential for guiding management decisions.

2.
Sci Total Environ ; 712: 135597, 2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-31791787

RESUMEN

In urbanized landscapes, green infrastructure is proposed as a method for using relatively small plots of land to manage stormwater and protect receiving ecosystems from pollutants. Bioretention cells can infiltrate stormwater from roads and parking lots, and as stormwater passed through the soils, metals can be removed. Metal removal and storage has been demonstrated in laboratory media columns and field-scale test cells, but we have an incomplete understanding of metal removal and accumulation in aging bioretention cells in the field. We surveyed 25 bioretention cells (0-7 years of service) for soil physicochemistry to determine which characteristics related to soil metal (Cu, Pb, and Zn) concentrations. We collected soil cores and treated them with simulated stormwater to measure potential rates of metal removal under different metal and salt concentrations. Older bioretention cells had higher Cu, Pb, and Zn concentrations in soil, which indicates accumulation and storage over time. The oldest cells had metal concentrations that were not a risk to human health but which approached screening thresholds for potential impairment of plants. Soil organic matter content (OM) was positively associated with metal concentrations which highlights the importance of OM in the functioning of cells. Retrofit bioretention cells were younger with less OM and more clay than cells built concurrently with new parking lot construction (i.e., de novo), but after 2.7 years of service, soil OM was similar between retrofit and de novo builds. Soil cores from de novo bioretention cells retained more stormwater metals than soil cores from retrofit cells, and this was likely due to differences in soil OM. Elevated road salt in stormwater was associated with less effective metal removal and leaching of Zn from soils. Overall, these data suggest that management (e.g., salting) and design (e.g., construction) decisions can greatly influence metal removal function of bioretention cells.


Asunto(s)
Ecosistema , Contaminantes Ambientales , Metales , Plantas , Lluvia , Suelo
4.
Science ; 360(6385): 164, 2018 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-29650668
5.
Geohealth ; 1(10): 320-332, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32158979

RESUMEN

Staphylococcus aureus can cause severe life-threatening illnesses such as sepsis and endocarditis. Although S. aureus has been isolated from marine water and intertidal beach sand, only a few studies have been conducted to assess prevalence of S. aureus at freshwater recreational beaches. As such, we aimed to determine prevalence and molecular characteristics of S. aureus in water and sand at 10 freshwater recreational beaches in Northeast Ohio, USA. Samples were analyzed using standard microbiology methods, and resulting isolates were typed by spa typing and multilocus sequence typing. The overall prevalence of S. aureus in sand and water samples was 22.8% (64/280). The prevalence of methicillin-resistant S. aureus (MRSA) was 8.2% (23/280). The highest prevalence was observed in summer (45.8%; 55/120) compared to fall (4.2%; 5/120) and spring (10.0%; 4/40). The overall prevalence of Panton-Valentine leukocidin genes among S. aureus isolates was 21.4% (15/70), and 27 different spa types were identified. The results of this study indicate that beach sand and freshwater of Northeast Ohio were contaminated with S. aureus, including MRSA. The high prevalence of S. aureus in summer months and presence of human-associated strains may indicate the possibility of role of human activity in S. aureus contamination of beach water and sand. While there are several possible routes for S. aureus contamination, S. aureus prevalence was higher in sites with wastewater treatment plants proximal to the beaches.

6.
Environ Manage ; 59(4): 604-618, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27928585

RESUMEN

Urbanization increases nutrient loading and lowers residence times for processing of reactive solutes, including nitrate, total dissolved nitrogen, orthophosphate, and dissolved organic carbon), which leads to increased stream concentrations and mass export. Stormwater control measures mitigate the impacts of urbanization, and have the potential to improve stream water quality, however the net effect instream is not well understood. We monitored two urban and two suburban watersheds in Charlotte, NC to determine if mitigation controlled the fraction of total mass export during storm, if development classification as either urban or suburban (defined by the age, density and distribution of urban development) controlled storm nutrient and carbon dynamics, and if stormwater control measures were able to change stream water chemistry. While average concentrations during stormflow were generally greater than baseflow, indicating that storms are important times of solute export, the fraction of storm-derived export was unrelated to mitigation by stormwater control measures. Development classification was generally not an important control on export of N and dissolved organic carbon. However, event mean concentrations of orthophosphate were higher at the suburban sites, possibly from greater fertilizer application. Stormwater control measures influenced instream water chemistry at only one site, which also had the greatest mitigated area, but differences between stormwater control measure outflow and stream water suggest the potential for water quality improvements. Together, results suggest stormwater control measures have the potential to decrease solute concentrations from urban runoff, but the type, location, and extent of urban development in the watershed may influence the magnitude of this effect.


Asunto(s)
Monitoreo del Ambiente/métodos , Lluvia , Ríos/química , Urbanización , Contaminantes Químicos del Agua/análisis , Calidad del Agua , Carbono/análisis , Nitratos/análisis , Nitrógeno/análisis , North Carolina , Movimientos del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA