Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
2.
J Vis Exp ; (168)2021 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-33645574

RESUMEN

The Mexican tetra, Astyanax mexicanus, is an emerging model system for studies in development and evolution. The existence of eyed surface (surface fish) and blind cave (cave fish) morphs in this species presents an opportunity to interrogate the mechanisms underlying morphological and behavioral evolution. Cave fish have evolved novel constructive and regressive traits. The constructive changes include increases in taste buds and jaws, lateral line sensory organs, and body fat. The regressive changes include loss or reduction of eyes. melanin pigmentation, schooling behavior, aggression, and sleep. To experimentally interrogate these changes, it is crucial to obtain large numbers of spawned embryos. Since the original A. mexicanus surface fish and cave fish were collected in Texas and Mexico in the 1990s, their descendants have been routinely stimulated to breed and spawn large numbers of embryos bimonthly in the Jeffery laboratory. Although breeding is controlled by food abundance and quality, light-dark cycles, and temperature, we have found that incremental temperature changes play a key role in stimulating maximal spawning. The gradual increase of temperature from 72 °F to 78 °F in the first three days of a breeding week provides two-three consecutive spawning days with maximal numbers of high-quality embryos, which is then followed by a gradual decrease of temperature from 78 °F to 72 °F during the last three days of the spawning week. The procedures shown in this video outline the workflow before and during a laboratory breeding week for incremental temperature stimulated spawning.


Asunto(s)
Cruzamiento , Characidae/fisiología , Temperatura , Animales , Cuevas , Pigmentación/fisiología
4.
Mol Ecol ; 27(22): 4397-4416, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30252986

RESUMEN

Understanding the molecular basis of repeatedly evolved phenotypes can yield key insights into the evolutionary process. Quantifying gene flow between populations is especially important in interpreting mechanisms of repeated phenotypic evolution, and genomic analyses have revealed that admixture occurs more frequently between diverging lineages than previously thought. In this study, we resequenced 47 whole genomes of the Mexican tetra from three cave populations, two surface populations and outgroup samples. We confirmed that cave populations are polyphyletic and two Astyanax mexicanus lineages are present in our data set. The two lineages likely diverged much more recently than previous mitochondrial estimates of 5-7 mya. Divergence of cave populations from their phylogenetically closest surface population likely occurred between ~161 and 191 k generations ago. The favoured demographic model for most population pairs accounts for divergence with secondary contact and heterogeneous gene flow across the genome, and we rigorously identified gene flow among all lineages sampled. Therefore, the evolution of cave-related traits occurred more rapidly than previously thought, and trogolomorphic traits are maintained despite gene flow with surface populations. The recency of these estimated divergence events suggests that selection may drive the evolution of cave-derived traits, as opposed to disuse and drift. Finally, we show that a key trogolomorphic phenotype QTL is enriched for genomic regions with low divergence between caves, suggesting that regions important for cave phenotypes may be transferred between caves via gene flow. Our study shows that gene flow must be considered in studies of independent, repeated trait evolution.


Asunto(s)
Evolución Biológica , Cuevas , Characidae/genética , Flujo Génico , Genética de Población , Animales , México , Modelos Genéticos , Fenotipo , Filogenia , Sitios de Carácter Cuantitativo
5.
J Vis Exp ; (112)2016 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-27404092

RESUMEN

Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus.


Asunto(s)
Genoma , Animales , Characidae , Edición Génica , Fenotipo , Nucleasas de los Efectores Tipo Activadores de la Transcripción
6.
PLoS One ; 10(12): e0142208, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26649887

RESUMEN

The sclera is the tough outer covering of the eye that provides structural support and helps maintain intraocular pressure. In some fishes, reptiles, and birds, the sclera is reinforced with an additional ring of hyaline cartilage or bone that forms from scleral ossicles. Currently, the evolutionary and genetic basis of scleral ossification is poorly understood, especially in teleost fishes. We assessed scleral ossification among several groups of the Mexican tetra (Astyanax mexicanus), which exhibit both an eyed and eyeless morph. Although eyed Astyanax surface fish have bony sclera similar to other teleosts, the ossicles of blind Astyanax cavefish generally do not form. We first sampled cavefish from multiple independent populations and used ancestral character state reconstructions to determine how many times scleral ossification has been lost. We then confirmed these results by assessing complementation of scleral ossification among the F1 hybrid progeny of two cavefish populations. Finally, we quantified the number of scleral ossicles present among the F2 hybrid progeny of a cross between surface fish and cavefish, and used this information to identify quantitative trait loci (QTL) responsible for this trait. Our results indicate that the loss of scleral ossification is common-but not ubiquitous-among Astyanax cavefish, and that this trait has been convergently lost at least three times. The presence of wild-type, ossified sclera among the F1 hybrid progeny of a cross between different cavefish populations confirms the convergent evolution of this trait. However, a strongly skewed distribution of scleral ossicles found among surface fish x cavefish F2 hybrids suggests that scleral ossification is a threshold trait with a complex genetic basis. Quantitative genetic mapping identified a single QTL for scleral ossification on Astyanax linkage group 1. We estimate that the threshold for this trait is likely determined by at least three genetic factors which may control the severity and onset of lens degeneration in cavefishes. We conclude that complex evolutionary and genetic patterns underlie the loss of scleral ossification in Astyanax cavefish.


Asunto(s)
Characidae/genética , Osteogénesis/genética , Sitios de Carácter Cuantitativo , Animales , Evolución Biológica , Cuevas , Mapeo Cromosómico , Ligamiento Genético , Fenotipo , Esclerótica
7.
BMC Biol ; 13: 15, 2015 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-25761998

RESUMEN

BACKGROUND: Sleep is characterized by extended periods of quiescence and reduced responsiveness to sensory stimuli. Animals ranging from insects to mammals adapt to environments with limited food by suppressing sleep and enhancing their response to food cues, yet little is known about the genetic and evolutionary relationship between these processes. The blind Mexican cavefish, Astyanax mexicanus is a powerful model for elucidating the genetic mechanisms underlying behavioral evolution. A. mexicanus comprises an extant ancestral-type surface dwelling morph and at least five independently evolved cave populations. Evolutionary convergence on sleep loss and vibration attraction behavior, which is involved in prey seeking, have been documented in cavefish raising the possibility that enhanced sensory responsiveness underlies changes in sleep. RESULTS: We established a system to study sleep and vibration attraction behavior in adult A. mexicanus and used high coverage quantitative trait loci (QTL) mapping to investigate the functional and evolutionary relationship between these traits. Analysis of surface-cave F2 hybrid fish and an outbred cave population indicates that independent genetic factors underlie changes in sleep/locomotor activity and vibration attraction behavior. High-coverage QTL mapping with genotyping-by-sequencing technology identify two novel QTL intervals that associate with locomotor activity and include the narcolepsy-associated tp53 regulating kinase. These QTLs represent the first genomic localization of locomotor activity in cavefish and are distinct from two QTLs previously identified as associating with vibration attraction behavior. CONCLUSIONS: Taken together, these results localize genomic regions underlying sleep/locomotor and sensory changes in cavefish populations and provide evidence that sleep loss evolved independently from enhanced sensory responsiveness.


Asunto(s)
Cuevas , Characidae/genética , Conducta Predatoria/fisiología , Privación de Sueño/genética , Animales , Evolución Biológica , Cruzamientos Genéticos , Femenino , Hibridación Genética , Locomoción , Masculino , México , Sitios de Carácter Cuantitativo/genética , Sueño , Vibración
8.
PLoS One ; 10(3): e0119370, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25774757

RESUMEN

Astyanax mexicanus, a teleost fish that exists in a river-dwelling surface form and multiple cave-dwelling forms, is an excellent system for studying the genetic basis of evolution. Cavefish populations, which independently evolved from surface fish ancestors multiple times, have evolved a number of morphological and behavioral traits. Quantitative trait loci (QTL) analyses have been performed to identify the genetic basis of many of these traits. These studies, combined with recent sequencing of the genome, provide a unique opportunity to identify candidate genes for these cave-specific traits. However, tools to test the requirement of these genes must be established to evaluate the role of candidate genes in generating cave-specific traits. To address this need, we designed transcription activator-like effector nucleases (TALENs) to target two genes that contain coding changes in cavefish relative to surface fish and map to the same location as QTL for pigmentation, oculocutaneous albinism 2 (oca2) and melanocortin 1 receptor (mc1r). We found that surface fish genes can be mutated using this method. TALEN-induced mutations in oca2 result in mosaic loss of melanin pigmentation visible as albino patches in F0 founder fish, suggesting biallelic gene mutations in F0s and allowing us to evaluate the role of this gene in pigmentation. The pigment cells in the albino patches can produce melanin upon treatment with L-DOPA, behaving similarly to pigment cells in albino cavefish and providing additional evidence that oca2 is the gene within the QTL responsible for albinism in cavefish. This technology has the potential to introduce a powerful tool for studying the role of candidate genes responsible for the evolution of cavefish traits.


Asunto(s)
Albinismo Oculocutáneo/genética , Characidae/genética , Desoxirribonucleasas/metabolismo , Proteínas de Peces/genética , Ingeniería Genética/métodos , Receptor de Melanocortina Tipo 1/genética , Animales , Animales Modificados Genéticamente , Evolución Biológica , Cuevas , Characidae/clasificación , Characidae/fisiología , Genoma , Mutación , Sitios de Carácter Cuantitativo
9.
J Exp Biol ; 217(Pt 6): 886-95, 2014 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-24265419

RESUMEN

The characid fish species Astyanax mexicanus offers a classic comparative model for the evolution of sensory systems. Populations of this species evolved in caves and became blind while others remained in streams (i.e. surface fish) and retained a functional visual system. The flow-sensitive lateral line receptors, called superficial neuromasts, are more numerous in cavefish than in surface fish, but it is unclear whether individual neuromasts differ in sensitivity between these populations. The aims of this study were to determine whether the neuromasts in cavefish impart enhanced sensitivity relative to surface fish and to test whether this aids their ability to sense flow in the absence of visual input. Sensitivity was assessed by modeling the mechanics and hydrodynamics of a flow stimulus. This model required that we measure the dimensions of the transparent cupula of a neuromast, which was visualized with fluorescent microspheres. We found that neuromasts within the eye orbit and in the suborbital region were larger and consequently about twice as sensitive in small adult cavefish as in surface fish. Behavioral experiments found that these cavefish, but not surface fish, were attracted to a 35 Hz flow stimulus. These results support the hypothesis that the large superficial neuromasts of small cavefish aid in flow sensing. We conclude that the morphology of the lateral line could have evolved in cavefish to permit foraging in a cave environment.


Asunto(s)
Conducta Animal/fisiología , Characidae/fisiología , Sistema de la Línea Lateral/fisiología , Mecanorreceptores/fisiología , Animales , Conducta Apetitiva , Evolución Biológica , Cuevas , Characidae/anatomía & histología , Characidae/genética , Sistema de la Línea Lateral/citología , Mecanorreceptores/citología , México , Microesferas , Modelos Biológicos , Imagen Óptica , Vibración
10.
Proc Natl Acad Sci U S A ; 110(42): 16933-8, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24085851

RESUMEN

When an organism colonizes a new environment, it needs to adapt both morphologically and behaviorally to survive and thrive. Although recent progress has been made in understanding the genetic architecture underlying morphological evolution, behavioral evolution is poorly understood. Here, we use the Mexican cavefish, Astyanax mexicanus, to study the genetic basis for convergent evolution of feeding posture. When river-dwelling surface fish became entrapped in the caves, they were confronted with dramatic changes in the availability and type of food source and in their ability to perceive it. In this setting, multiple independent populations of cavefish exhibit an altered feeding posture compared with their ancestral surface forms. We determined that this behavioral change in feeding posture is not due to changes in cranial facial morphology, body depth, or to take advantage of the expansion in the number of taste buds. Quantitative genetic analysis demonstrates that two different cave populations have evolved similar feeding postures through a small number of genetic changes, some of which appear to be distinct. This work indicates that independently evolved populations of cavefish can evolve the same behavioral traits to adapt to similar environmental challenges by modifying different sets of genes.


Asunto(s)
Conducta Animal/fisiología , Cuevas , Characidae/fisiología , Evolución Molecular , Conducta Alimentaria/fisiología , Sitios Genéticos/fisiología , Animales
11.
PLoS One ; 8(2): e57281, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23437360

RESUMEN

The retina is the light-sensitive tissue of the eye that facilitates vision. Mutations within genes affecting eye development and retinal function cause a host of degenerative visual diseases, including retinitis pigmentosa and anophthalmia/microphthalmia. The characin fish Astyanax mexicanus includes both eyed (surface fish) and eyeless (cavefish) morphs that initially develop eyes with normal retina; however, early in development, the eyes of cavefish degenerate. Since both surface and cave morphs are members of the same species, they serve as excellent evolutionary mutant models with which to identify genes causing retinal degeneration. In this study, we crossed the eyed and eyeless forms of A. mexicanus and quantified the thickness of individual retinal layers among 115 F(2) hybrid progeny. We used next generation sequencing (RAD-seq) and microsatellite mapping to construct a dense genetic map of the Astyanax genome, scan for quantitative trait loci (QTL) affecting retinal thickness, and identify candidate genes within these QTL regions. The map we constructed for Astyanax includes nearly 700 markers assembled into 25 linkage groups. Based on our scans with this map, we identified four QTL, one each associated with the thickness of the ganglion, inner nuclear, outer plexiform, and outer nuclear layers of the retina. For all but one QTL, cavefish alleles resulted in a clear reduction in the thickness of the affected layer. Comparative mapping of genetic markers within each QTL revealed that each QTL corresponds to an approximately 35 Mb region of the zebrafish genome. Within each region, we identified several candidate genes associated with the function of each affected retinal layer. Our study is the first to examine Astyanax retinal degeneration in the context of QTL mapping. The regions we identify serve as a starting point for future studies on the genetics of retinal degeneration and eye disease using the evolutionary mutant model Astyanax.


Asunto(s)
Ceguera/genética , Characidae/genética , Morfogénesis/genética , Sitios de Carácter Cuantitativo , Retina/metabolismo , Degeneración Retiniana/genética , Alelos , Animales , Evolución Biológica , Cuevas , Mapeo Cromosómico , Cruzamientos Genéticos , Oscuridad , Ligamiento Genético , Genoma , Retina/patología , Degeneración Retiniana/patología
12.
PLoS One ; 8(1): e53553, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23326453

RESUMEN

Astyanax mexicanus, a teleost species with surface dwelling (surface fish) and cave adapted (cavefish) morphs, is an important model system in evolutionary developmental biology (evodevo). Astyanax cavefish differ from surface fish in numerous traits, including the enhancement of non-visual sensory systems, and the loss of eyes and pigmentation. The genetic bases for these differences are not fully understood as genomic and transcriptomic data are lacking. We here present de novo transcriptome sequencing of embryonic and larval stages of a surface fish population and a cavefish population originating from the Pachón cave using the Sanger method. This effort represents the first large scale sequence and clone resource for the Astyanax research community. The analysis of these sequences show low levels of polymorphism in cavefish compared to surface fish, confirming previous studies on a small number of genes. A high proportion of the genes mutated in cavefish are known to be expressed in the zebrafish visual system. Such a high number of mutations in cavefish putative eye genes may be explained by relaxed selection for vision during the evolution in the absence of light. Based on these sequence differences, we provide a list of 11 genes that are potential candidates for having a role in cavefish visual system degeneration.


Asunto(s)
Cuevas , Characiformes/genética , Ojo/metabolismo , Mutación/genética , Análisis de Secuencia de ADN/métodos , Transcriptoma/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Codón de Terminación/genética , Proteínas de Peces/química , Proteínas de Peces/genética , Regulación de la Expresión Génica , Biblioteca de Genes , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Polimorfismo Genético , ARN Mensajero/genética , ARN Mensajero/metabolismo
13.
PLoS One ; 7(8): e41443, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22870223

RESUMEN

The relationship between growth rate and environmental space is an unresolved issue in teleosts. While it is known from aquaculture studies that stocking density has a negative relationship to growth, the underlying mechanisms have not been elucidated, primarily because the growth rate of populations rather than individual fish were the subject of all previous studies. Here we investigate this problem in the teleost Astyanax mexicanus, which consists of a sighted surface-dwelling form (surface fish) and several blind cave-dwelling (cavefish) forms. Surface fish and cavefish are distinguished by living in spatially contrasting environments and therefore are excellent models to study the effects of environmental size on growth. Multiple controlled growth experiments with individual fish raised in confined or unconfined spaces showed that environmental size has a major impact on growth rate in surface fish, a trait we have termed space dependent growth (SDG). In contrast, SDG has regressed to different degrees in the Pachón and Tinaja populations of cavefish. Mating experiments between surface and Pachón cavefish show that SDG is inherited as a dominant trait and is controlled by multiple genetic factors. Despite its regression in blind cavefish, SDG is not affected when sighted surface fish are raised in darkness, indicating that vision is not required to perceive and react to environmental space. Analysis of plasma cortisol levels showed that an elevation above basal levels occurred soon after surface fish were exposed to confined space. This initial cortisol peak was absent in Pachón cavefish, suggesting that the effects of confined space on growth may be mediated partly through a stress response. We conclude that Astyanax reacts to confined spaces by exhibiting SDG, which has a genetic component and shows evolutionary regression during adaptation of cavefish to confined environments.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Characidae/fisiología , Ecosistema , Genes Dominantes , Sitios de Carácter Cuantitativo , Animales , Hidrocortisona/sangre
14.
Integr Zool ; 4(1): 99-109, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21392280

RESUMEN

Changes in gene expression were examined by microarray analysis during development of the eyed surface dwelling (surface fish) and blind cave-dwelling (cavefish) forms of the teleost Astyanax mexicanus De Filippi, 1853. The cross-species microarray used surface and cavefish RNA hybridized to a DNA chip prepared from a closely related species, the zebrafish Danio rerio Hamilton, 1822. We identified a total of 67 differentially expressed probe sets at three days post-fertilization: six upregulated and 61 downregulated in cavefish relative to surface fish. Many of these genes function either in eye development and/or maintenance, or in programmed cell death. The upregulated probe set showing the highest mean fold change was similar to the human ubiquitin specific protease 53 gene. The downregulated probe sets showing some of the highest fold changes corresponded to genes with roles in eye development, including those encoding gamma crystallins, the guanine nucleotide binding proteins Gnat1 and Gant2, a BarH-like homeodomain transcription factor, and rhodopsin. Downregulation of gamma-crystallin and rhodopsin was confirmed by in situ hybridization and immunostaining with specific antibodies. Additional downregulated genes encode molecules that inhibit or activate programmed cell death. The results suggest that cross-species microarray can be used for identifying differentially expressed genes in cavefish, that many of these genes might be involved in eye degeneration via apoptotic processes, and that more genes are downregulated than upregulated in cavefish, consistent with the predominance of morphological losses over gains during regressive evolution.


Asunto(s)
Adaptación Biológica/genética , Ceguera/veterinaria , Peces/genética , Regulación del Desarrollo de la Expresión Génica/genética , Animales , Ceguera/genética , Cartilla de ADN/genética , Marcadores Genéticos/genética , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Hibridación in Situ , México , Análisis por Micromatrices , Rodopsina/metabolismo , Especificidad de la Especie , gamma-Cristalinas/genética , gamma-Cristalinas/metabolismo
15.
Proc Natl Acad Sci U S A ; 105(51): 20106-11, 2008 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-19104060

RESUMEN

The blind Mexican cave tetra, Astyanax mexicanus, is a unique model system for the study of parallelism and the evolution of cave-adapted traits. Understanding the genetic basis for these traits has recently become feasible thanks to production of a genome-wide linkage map and quantitative trait association analyses. The selection of suitable candidate genes controlling quantitative traits remains challenging, however, in the absence of a physical genome. Here, we describe the integration of multiple linkage maps generated in four separate crosses between surface, cave, and hybrid forms of A. mexicanus. We performed exhaustive BLAST analyses of genomic markers populating this integrated map against sequenced genomes of numerous taxa, ranging from yeast to amniotes. We found the largest number of identified sequences (228), with the most expect (E) values <10(-5) (95), in the zebrafish Danio rerio. The most significant hits were assembled into an "anchored" linkage map with Danio, revealing numerous regions of conserved synteny, many of which are shared across critical regions of identified quantitative trait loci (QTL). Using this anchored map, we predicted the positions of 21 test genes on the integrated linkage map and verified that 18 of these are found in locations homologous to their chromosomal positions in D. rerio. The anchored map allowed the identification of four candidate genes for QTL relating to rib number and eye size. The map we have generated will greatly accelerate the production of viable lists of additional candidate genes involved in the development and evolution of cave-specific traits in A. mexicanus.


Asunto(s)
Mapeo Cromosómico , Ligamiento Genético , Selección Genética , Tetraodontiformes/genética , Animales , Evolución Biológica , Ojo , Sitios de Carácter Cuantitativo , Costillas , Sintenía , Pez Cebra
16.
J Comp Neurol ; 505(2): 221-33, 2007 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-17853442

RESUMEN

The sighted surface-dwelling (surface fish, SF) and the blind cave-living (cavefish, CF) forms of Astyanax mexicanus offer a unique opportunity to study the evolutionary changes in developmental mechanisms that lead to retinal degeneration. Previous data have shown the role of increased midline Sonic Hedgehog (Shh) signalling in cavefish eye degeneration (Yamamoto et al. [2004] Nature 431:844-847). Here, we have compared the major steps of eye development in SF and CF between 14 hours and 5 days of development. We have analyzed cell proliferation through PCNA and phospho-histone H3 staining and apoptosis through TUNEL and live LysoTracker analysis. We have assessed the expression of the major eye development signalling factors Shh and Fgf8, and the eye patterning genes Pax6, Lhx2, Lhx9, and Vax1, together with the differentiation marker GAD65. We show that eye development is retarded in CF and that cell proliferation in CF retina is proportionately similar to SF during early development, yet the retina degenerates after massive apoptosis in the lens and widespread cell death throughout the neuroretina. Moreover, and surprisingly, the signalling, patterning, and differentiation processes leading to the establishment of retinal layers and cell types happen almost normally in CF, although some signs of disorganization, slight heterochronies, and a lack of expression gradients are observable. Our data demonstrate that the evolutionary process of eye degeneration in the blind CF does not occur because of patterning defects of the retina and are consistent with the proposed scenario in which the trigger for eye degeneration in CF is lens apoptosis.


Asunto(s)
Ceguera/complicaciones , Peces/embriología , Regulación del Desarrollo de la Expresión Génica/fisiología , Degeneración Retiniana/etiología , Degeneración Retiniana/patología , Animales , Apoptosis , Ceguera/embriología , Ceguera/metabolismo , Ceguera/patología , Tipificación del Cuerpo , Diferenciación Celular , Proliferación Celular , Embrión no Mamífero , Peces/genética , Peces/metabolismo , Genes Homeobox , Glutamato Descarboxilasa/metabolismo , Histonas/metabolismo , Proteínas de Homeodominio/metabolismo , Hibridación in Situ , Etiquetado Corte-Fin in Situ/métodos
17.
Evol Dev ; 5(5): 435-46, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12950623

RESUMEN

We studied the development and evolution of craniofacial features in the teleost fish, Astyanax mexicanus. This species has an eyed surface dwelling form (surface fish) and many different cave dwelling forms (cavefish) with various degrees of reduced eyes and pigmentation. The craniofacial features we examined are the tooth-bearing maxillary bones, the nasal and antorbital bones, the circumorbital bones, and the opercular bones, all of which show evolutionary modifications in different cavefish populations. Manipulations of eye formation by transplantation of the embryonic lens, by lentectomy, or by removing the optic vesicle showed that eye-dependent and -independent processes change both the surface fish and cavefish craniofacial skeletons. The size of the olfactory pits, which the nasal and antorbital bones define, and the size and positioning of the circumorbital bones were found to correlate with eye development. For the six suborbital bones (SO1-6), the relationship with the developing eye appears to be due to ossification initiated from foci in the suborbital canal of cranial neuromasts, whose patterning is also highly correlated with the presence or absence of an eye. By contrast, we found that the number of maxillary teeth, the number of SO3 bone elements, the positioning of SO4-6 with respect to the opercular bone, and the shape of the opercular bone are not dependent on eye formation and vary among different cavefish populations. The results suggest that evolution of the cavefish craniofacial skeleton is controlled by multiple developmental events, some a direct consequence of eye degeneration and others unrelated to loss of the eye.


Asunto(s)
Evolución Biológica , Tipificación del Cuerpo/fisiología , Ojo/embriología , Peces/embriología , Cabeza/embriología , Animales , Epigénesis Genética/fisiología , Técnicas Histológicas , Cristalino/trasplante , México , Órbita/embriología , Texas
18.
Integr Comp Biol ; 43(4): 531-41, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21680461

RESUMEN

The evolutionary mechanisms responsible for the loss of eyes in cave animals are still unresolved. Hypotheses invoking natural selection or neutral mutation have been advanced to explain eye regression. Here we describe comparative molecular and developmental studies in the teleost Astyanax mexicanus that shed new light on this problem. A. mexicanus is a single species consisting of a sighted surface-dwelling form (surface fish) and many blind cave-dwelling forms (cavefish) from different caves. We first review the evolutionary relationships of Astyanax cavefish populations and conclude that eye degeneration may have evolved multiple times. We then compare the mechanisms of eye degeneration in different cavefish populations. We describe the results of experiments showing that programmed cell death of the lens plays a key role in controlling eye degeneration in these cavefish populations. We also show that Pax6 gene expression and fate determination in the optic primordia are modified similarly in different cavefish populations, probably due to hyperactive midline signaling. We discuss the contributions of the comparative developmental approach toward resolving the evolutionary mechanisms of eye degeneration. A new hypothesis is presented in which both natural selection and neutral mutation are proposed to have roles in cavefish eye degeneration.

19.
Mol Biol Evol ; 19(4): 446-55, 2002 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-11919286

RESUMEN

A diverse group of animals has adapted to caves and lost their eyes and pigmentation, but little is known about how these animals and their striking phenotypes have evolved. The teleost Astyanax mexicanus consists of an eyed epigean form (surface fish) and at least 29 different populations of eyeless hypogean forms (cavefish). Current alternative hypotheses suggest that adaptation to cave environments may have occurred either once or multiple times during the evolutionary history of this species. If the latter is true, the unique phenotypes of different cave-dwelling populations may result from convergence of form, and different genetic changes and developmental processes may have similar morphological consequences. Here we report an analysis of variation in the mitochondrial NADH dehydrogenase 2 (ND2) gene among different surface fish and cavefish populations. The results identify a minimum of two genetically distinctive cavefish lineages with similar eyeless phenotypes. The distinction between these divergent forms is supported by differences in the number of rib-bearing thoracic vertebrae in their axial skeletons. The geographic distribution of ND2 haplotypes is consistent with roles for multiple founder events and introgressive hybridization in the evolution of cave-related phenotypes. The existence of multiple genetic lineages makes A. mexicanus an excellent model to study convergence and the genes and developmental pathways involved in the evolution of the eye and pigment degeneration.


Asunto(s)
Ceguera/genética , Peces/genética , Regulación Enzimológica de la Expresión Génica/fisiología , Mitocondrias/enzimología , NADH Deshidrogenasa/genética , Fenotipo , Animales , Ceguera/enzimología , Cartilla de ADN/química , ADN Mitocondrial/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Haplotipos , NADH Deshidrogenasa/metabolismo , Reacción en Cadena de la Polimerasa , Polimorfismo Conformacional Retorcido-Simple , Vértebras Torácicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA