Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361043

RESUMEN

Intravesicular pH plays a crucial role in melanosome maturation and function. Melanosomal pH changes during maturation from very acidic in the early stages to neutral in late stages. Neutral pH is critical for providing optimal conditions for the rate-limiting, pH-sensitive melanin-synthesizing enzyme tyrosinase (TYR). This dramatic change in pH is thought to result from the activity of several proteins that control melanosomal pH. Here, we computationally investigated the pH-dependent stability of several melanosomal membrane proteins and compared them to the pH dependence of the stability of TYR. We confirmed that the pH optimum of TYR is neutral, and we also found that proteins that are negative regulators of melanosomal pH are predicted to function optimally at neutral pH. In contrast, positive pH regulators were predicted to have an acidic pH optimum. We propose a competitive mechanism among positive and negative regulators that results in pH equilibrium. Our findings are consistent with previous work that demonstrated a correlation between the pH optima of stability and activity, and they are consistent with the expected activity of positive and negative regulators of melanosomal pH. Furthermore, our data suggest that disease-causing variants impact the pH dependence of melanosomal proteins; this is particularly prominent for the OCA2 protein. In conclusion, melanosomal pH appears to affect the activity of multiple melanosomal proteins.


Asunto(s)
Antígenos de Neoplasias/química , ATPasas Transportadoras de Cobre/química , Melanosomas/metabolismo , Proteínas de Transporte de Membrana/química , Simulación de Dinámica Molecular , Monofenol Monooxigenasa/química , Protones , Antígenos de Neoplasias/metabolismo , ATPasas Transportadoras de Cobre/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Melanosomas/química , Proteínas de Transporte de Membrana/metabolismo , Monofenol Monooxigenasa/metabolismo , Estabilidad Proteica
2.
J Cell Sci ; 133(17)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32788232

RESUMEN

Neutrophils rely on glycolysis for energy production. How mitochondria regulate neutrophil function is not fully understood. Here, we report that mitochondrial outer membrane protein Mitofusin 2 (MFN2) regulates neutrophil homeostasis and chemotaxis in vivoMfn2-deficient neutrophils are released from the hematopoietic tissue, trapped in the vasculature in zebrafish embryos, and not capable of chemotaxis. Consistent with this, human neutrophil-like cells that are deficient for MFN2 fail to arrest on activated endothelium under sheer stress or perform chemotaxis on 2D surfaces. Deletion of MFN2 results in a significant reduction of neutrophil infiltration to the inflamed peritoneal cavity in mice. Mechanistically, MFN2-deficient neutrophil-like cells display disrupted mitochondria-ER interaction, heightened intracellular Ca2+ levels and elevated Rac activation after chemokine stimulation. Restoring a mitochondria-ER tether rescues the abnormal Ca2+ levels, Rac hyperactivation and chemotaxis defect resulting from MFN2 depletion. Finally, inhibition of Rac activation restores chemotaxis in MFN2-deficient neutrophils. Taken together, we have identified that MFN2 regulates neutrophil migration via maintaining the mitochondria-ER interaction to suppress Rac activation, and uncovered a previously unrecognized role of MFN2 in regulating cell migration and the actin cytoskeleton.This article has an associated First Person interview with the first authors of the paper.


Asunto(s)
Neutrófilos , Pez Cebra , Citoesqueleto de Actina , Adhesivos , Animales , Movimiento Celular , Ratones
3.
Cancer Lett ; 451: 136-141, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30878527

RESUMEN

miR-223 is an evolutionarily conserved anti-inflammatory microRNA primarily expressed in myeloid cells. miR-223 post-transcriptionally regulates many genes essential in inflammation, cell proliferation, and invasion. Recent studies show that miR-223 is either endogenously expressed or transferred in exosomes or extracellular vesicles to non-phagocytic cells including cancer cells, where it exerts biological functions. In cancerous cells, miR-223 acts either as an oncomiR promoting tumors or as a tumor suppressor in a context-dependent manner. Taken together, miR-223 can regulate tumorigenesis at multiple levels, including by suppressing the inflammatory tumor microenvironment and modulating malignancy of cancer cells.


Asunto(s)
Carcinogénesis/genética , Inflamación/fisiopatología , MicroARNs/fisiología , Neoplasias/fisiopatología , Exosomas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Neoplasias/metabolismo , Microambiente Tumoral
4.
Dis Model Mech ; 11(3)2018 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-29590639

RESUMEN

Neutrophils are fast-moving cells essential for host immune functions. Although they primarily rely on glycolysis for ATP, isolated primary human neutrophils depend on mitochondrial membrane potential for chemotaxis. However, it is not known whether mitochondria regulate neutrophil motility in vivo, and the underlying molecular mechanisms remain obscure. Here, we visualized mitochondria in an interconnected network that localizes to the front and rear of migrating neutrophils using a novel transgenic zebrafish line. To disrupt mitochondrial function genetically, we established a gateway system harboring the CRISPR/Cas9 elements for tissue-specific knockout. In a transgenic line, neutrophil-specific disruption of mitochondrial DNA polymerase, polg, significantly reduced the velocity of neutrophil interstitial migration. In addition, inhibiting the mitochondrial electron transport chain or the enzymes that reduce mitochondrial reactive oxygen species also inhibited neutrophil motility. The reduced cell motility that resulted from neutrophil-specific knockout of sod1 was rescued with sod1 mRNA overexpression, or by treating with scavengers of reactive oxygen species. Together, our work has provided the first in vivo evidence that mitochondria regulate neutrophil motility, as well as tools for the functional characterization of mitochondria-related genes in neutrophils and insights into immune deficiency seen in patients with primary mitochondrial disorders.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Técnicas de Inactivación de Genes , Mitocondrias/metabolismo , Neutrófilos/metabolismo , Pez Cebra/metabolismo , Animales , Secuencia de Bases , Movimiento Celular , Clonación Molecular , ADN Polimerasa Dirigida por ADN/genética , Transporte de Electrón , Dinámicas Mitocondriales , Especificidad de Órganos , Oxidación-Reducción
5.
Sci Signal ; 6(302): ra100, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24255177

RESUMEN

Agrobacterium-mediated transformation is the most widely used technique for generating transgenic plants. However, many crops remain recalcitrant. We found that an Arabidopsis myb family transcription factor (MTF1) inhibited plant transformation susceptibility. Mutating MTF1 increased attachment of several Agrobacterium strains to roots and increased both stable and transient transformation in both susceptible and transformation-resistant Arabidopsis ecotypes. Cytokinins from Agrobacterium tumefaciens decreased the expression of MTF1 through activation of the cytokinin response regulator ARR3. Mutating AHK3 and AHK4, genes that encode cytokinin-responsive kinases, increased the expression of MTF1 and impaired plant transformation. Mutant mtf1 plants also had increased expression of AT14A, which encodes a putative transmembrane receptor for cell adhesion molecules. Plants overexpressing AT14A exhibited increased susceptibility to transformation, whereas at14a mutant plants exhibited decreased attachment of bacteria to roots and decreased transformation, suggesting that AT14A may serve as an anchor point for Agrobacteria. Thus, by promoting bacterial attachment and transformation of resistant plants and increasing such processes in susceptible plants, treating roots with cytokinins may help engineer crops with improved features or yield.


Asunto(s)
Agrobacterium tumefaciens/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Citocininas/metabolismo , Factores de Transcripción/genética , Agrobacterium tumefaciens/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/fisiología , Regulación de la Expresión Génica de las Plantas , Histidina Quinasa , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Plantas Modificadas Genéticamente , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Interferencia de ARN , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Transducción de Señal/fisiología , Factores de Transcripción/metabolismo , Transcriptoma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...