Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Bio Mater ; 6(6): 2122-2136, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37224450

RESUMEN

Wound healing remains a burdensome healthcare problem due to moisture loss and bacterial infection. Advanced hydrogel dressings can help to resolve these issues by assisting and accelerating regenerative processes such as cell migration and angiogenesis because of the similarities between their composition and structure with natural skin. In this study, we aimed to develop a keratin-based hydrogel dressing and investigate the impact of the delivery of LL-37 antimicrobial peptide using this hydrogel in treating full-thickness rat wounds. Therefore, oxidized (keratose) and reduced (kerateine) keratins were utilized to prepare 10% (w/v) hydrogels with different ratios of keratose and kerateine. The mechanical properties of these hydrogels with compressive modulus of 6-32 kPa and tan δ <1 render them suitable for wound healing applications. Also, sustained release of LL-37 from the keratin hydrogel was achieved, which can lead to superior wound healing. In vitro studies confirmed that LL-37 containing 25:75% of keratose/kerateine (L-KO25:KN75) would result in significant fibroblast proliferation (∼85% on day 7), adhesion (∼90 cells/HPF), and migration (73% scratch closure after 12 h and complete closure after 24 h). Also, L-KO25:KN75 is capable of eradicating both Gram-negative and Gram-positive bacteria after 18 h. According to in vivo assessment of L-KO25:KN75, wound closure at day 21 was >98% and microvessel density (>30 vessels/HPF at day 14) was significantly superior in comparison to other treatment groups. The mRNA expression of VEGF and IL-6 was also increased in the L-KO25:KN75-treated group and contributed to proper wound healing. Therefore, the LL-37-containing keratin hydrogel ameliorated wound closure, and also angiogenesis was enhanced as a result of LL-37 delivery. These results suggested that the L-KO25:KN75 hydrogel could be a sustainable substitute for skin tissue regeneration in medical applications.


Asunto(s)
Hidrogeles , Queratosis , Ratas , Animales , Hidrogeles/farmacología , Hidrogeles/química , Queratinas/química , Cicatrización de Heridas , Piel
2.
Biomed Res Int ; 2022: 7638245, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35118158

RESUMEN

Distinctive characteristics of articular cartilage such as avascularity and low chondrocyte conversion rate present numerous challenges for orthopedists. Tissue engineering is a novel approach that ameliorates the regeneration process by exploiting the potential of cells, biodegradable materials, and growth factors. However, problems exist with the use of tissue-engineered construct, the most important of which is scaffold-cartilage integration. Recently, many attempts have been made to address this challenge via manipulation of cellular, material, and biomolecular composition of engineered tissue. Hence, in this review, we highlight strategies that facilitate cartilage-scaffold integration. Recent advances in where efficient integration between a scaffold and native cartilage could be achieved are emphasized, in addition to the positive aspects and remaining problems that will drive future research.


Asunto(s)
Cartílago Articular , Ingeniería de Tejidos , Condrocitos , Regeneración , Andamios del Tejido
3.
Adv Exp Med Biol ; 1345: 71-84, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34582015

RESUMEN

Small intestinal submucosa (SIS) is the most studied extracellular matrix (ECM) for repair and regeneration of different organs and tissues. Promising results of SIS-ECM as a vascular graft, led scientists to examine its applicability for repairing other tissues. Overall results indicated that SIS grafts induce tissue regeneration and remodeling to almost native condition. Investigating immunomodulatory effects of SIS is another interesting field of research. SIS can be utilized in different forms for multiple clinical and experimental studies. The aim of this chapter is to investigate the decellularization process of SIS and its common clinical application.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Matriz Extracelular , Mucosa Intestinal , Intestino Delgado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA